Bug Summary

File:out/../deps/icu-small/source/common/normalizer2impl.cpp
Warning:line 2794, column 9
Value stored to 'offset' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name normalizer2impl.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=all -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/home/maurizio/node-v18.6.0/out -resource-dir /usr/local/lib/clang/16.0.0 -D V8_DEPRECATION_WARNINGS -D V8_IMMINENT_DEPRECATION_WARNINGS -D _GLIBCXX_USE_CXX11_ABI=1 -D NODE_OPENSSL_CONF_NAME=nodejs_conf -D NODE_OPENSSL_HAS_QUIC -D __STDC_FORMAT_MACROS -D OPENSSL_NO_PINSHARED -D OPENSSL_THREADS -D U_COMMON_IMPLEMENTATION=1 -D U_ATTRIBUTE_DEPRECATED= -D _CRT_SECURE_NO_DEPRECATE= -D U_STATIC_IMPLEMENTATION=1 -D UCONFIG_NO_SERVICE=1 -D U_ENABLE_DYLOAD=0 -D U_HAVE_STD_STRING=1 -D UCONFIG_NO_BREAK_ITERATION=0 -I ../deps/icu-small/source/common -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/backward -internal-isystem /usr/local/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../x86_64-redhat-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-unused-parameter -Wno-deprecated-declarations -Wno-strict-aliasing -std=gnu++17 -fdeprecated-macro -fdebug-compilation-dir=/home/maurizio/node-v18.6.0/out -ferror-limit 19 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-08-22-142216-507842-1 -x c++ ../deps/icu-small/source/common/normalizer2impl.cpp
1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5*
6* Copyright (C) 2009-2014, International Business Machines
7* Corporation and others. All Rights Reserved.
8*
9*******************************************************************************
10* file name: normalizer2impl.cpp
11* encoding: UTF-8
12* tab size: 8 (not used)
13* indentation:4
14*
15* created on: 2009nov22
16* created by: Markus W. Scherer
17*/
18
19// #define UCPTRIE_DEBUG
20
21#include "unicode/utypes.h"
22
23#if !UCONFIG_NO_NORMALIZATION0
24
25#include "unicode/bytestream.h"
26#include "unicode/edits.h"
27#include "unicode/normalizer2.h"
28#include "unicode/stringoptions.h"
29#include "unicode/ucptrie.h"
30#include "unicode/udata.h"
31#include "unicode/umutablecptrie.h"
32#include "unicode/ustring.h"
33#include "unicode/utf16.h"
34#include "unicode/utf8.h"
35#include "bytesinkutil.h"
36#include "cmemory.h"
37#include "mutex.h"
38#include "normalizer2impl.h"
39#include "putilimp.h"
40#include "uassert.h"
41#include "ucptrie_impl.h"
42#include "uset_imp.h"
43#include "uvector.h"
44
45U_NAMESPACE_BEGINnamespace icu_71 {
46
47namespace {
48
49/**
50 * UTF-8 lead byte for minNoMaybeCP.
51 * Can be lower than the actual lead byte for c.
52 * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold.
53 */
54inline uint8_t leadByteForCP(UChar32 c) {
55 if (c <= 0x7f) {
56 return (uint8_t)c;
57 } else if (c <= 0x7ff) {
58 return (uint8_t)(0xc0+(c>>6));
59 } else {
60 // Should not occur because ccc(U+0300)!=0.
61 return 0xe0;
62 }
63}
64
65/**
66 * Returns the code point from one single well-formed UTF-8 byte sequence
67 * between cpStart and cpLimit.
68 *
69 * Trie UTF-8 macros do not assemble whole code points (for efficiency).
70 * When we do need the code point, we call this function.
71 * We should not need it for normalization-inert data (norm16==0).
72 * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points.
73 */
74UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) {
75 // Similar to U8_NEXT_UNSAFE(s, i, c).
76 U_ASSERT(cpStart < cpLimit)(void)0;
77 uint8_t c = *cpStart;
78 switch(cpLimit-cpStart) {
79 case 1:
80 return c;
81 case 2:
82 return ((c&0x1f)<<6) | (cpStart[1]&0x3f);
83 case 3:
84 // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (UChar)
85 return (UChar)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f));
86 case 4:
87 return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f);
88 default:
89 UPRV_UNREACHABLE_EXITabort(); // Should not occur.
90 }
91}
92
93/**
94 * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF.
95 * Otherwise returns a negative value.
96 */
97UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) {
98 if ((p - start) >= 3) {
99 p -= 3;
100 uint8_t l = *p;
101 uint8_t t1, t2;
102 if (0xe1 <= l && l <= 0xed &&
103 (t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f &&
104 (t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f &&
105 (l < 0xed || t1 <= 0x1f)) {
106 return ((l & 0xf) << 12) | (t1 << 6) | t2;
107 }
108 }
109 return U_SENTINEL(-1);
110}
111
112/**
113 * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point.
114 * Otherwise returns a negative value.
115 */
116int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) {
117 // Jamo T: E1 86 A8..E1 87 82
118 if ((limit - src) >= 3 && *src == 0xe1) {
119 if (src[1] == 0x86) {
120 uint8_t t = src[2];
121 // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7.
122 // Offset 0 does not correspond to any conjoining Jamo.
123 if (0xa8 <= t && t <= 0xbf) {
124 return t - 0xa7;
125 }
126 } else if (src[1] == 0x87) {
127 uint8_t t = src[2];
128 if ((int8_t)t <= (int8_t)0x82u) {
129 return t - (0xa7 - 0x40);
130 }
131 }
132 }
133 return -1;
134}
135
136void
137appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta,
138 ByteSink &sink, Edits *edits) {
139 char buffer[U8_MAX_LENGTH4];
140 int32_t length;
141 int32_t cpLength = (int32_t)(cpLimit - cpStart);
142 if (cpLength == 1) {
143 // The builder makes ASCII map to ASCII.
144 buffer[0] = (uint8_t)(*cpStart + delta);
145 length = 1;
146 } else {
147 int32_t trail = *(cpLimit-1) + delta;
148 if (0x80 <= trail && trail <= 0xbf) {
149 // The delta only changes the last trail byte.
150 --cpLimit;
151 length = 0;
152 do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit);
153 buffer[length++] = (uint8_t)trail;
154 } else {
155 // Decode the code point, add the delta, re-encode.
156 UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta;
157 length = 0;
158 U8_APPEND_UNSAFE(buffer, length, c)do { uint32_t __uc=(c); if(__uc<=0x7f) { (buffer)[(length)
++]=(uint8_t)__uc; } else { if(__uc<=0x7ff) { (buffer)[(length
)++]=(uint8_t)((__uc>>6)|0xc0); } else { if(__uc<=0xffff
) { (buffer)[(length)++]=(uint8_t)((__uc>>12)|0xe0); } else
{ (buffer)[(length)++]=(uint8_t)((__uc>>18)|0xf0); (buffer
)[(length)++]=(uint8_t)(((__uc>>12)&0x3f)|0x80); } (
buffer)[(length)++]=(uint8_t)(((__uc>>6)&0x3f)|0x80
); } (buffer)[(length)++]=(uint8_t)((__uc&0x3f)|0x80); } }
while (false)
;
159 }
160 }
161 if (edits != nullptr) {
162 edits->addReplace(cpLength, length);
163 }
164 sink.Append(buffer, length);
165}
166
167} // namespace
168
169// ReorderingBuffer -------------------------------------------------------- ***
170
171ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest,
172 UErrorCode &errorCode) :
173 impl(ni), str(dest),
174 start(str.getBuffer(8)), reorderStart(start), limit(start),
175 remainingCapacity(str.getCapacity()), lastCC(0) {
176 if (start == nullptr && U_SUCCESS(errorCode)) {
177 // getBuffer() already did str.setToBogus()
178 errorCode = U_MEMORY_ALLOCATION_ERROR;
179 }
180}
181
182UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
183 int32_t length=str.length();
184 start=str.getBuffer(destCapacity);
185 if(start==NULL__null) {
186 // getBuffer() already did str.setToBogus()
187 errorCode=U_MEMORY_ALLOCATION_ERROR;
188 return FALSE0;
189 }
190 limit=start+length;
191 remainingCapacity=str.getCapacity()-length;
192 reorderStart=start;
193 if(start==limit) {
194 lastCC=0;
195 } else {
196 setIterator();
197 lastCC=previousCC();
198 // Set reorderStart after the last code point with cc<=1 if there is one.
199 if(lastCC>1) {
200 while(previousCC()>1) {}
201 }
202 reorderStart=codePointLimit;
203 }
204 return TRUE1;
205}
206
207UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
208 int32_t length=(int32_t)(limit-start);
209 return
210 length==(int32_t)(otherLimit-otherStart) &&
211 0==u_memcmpu_memcmp_71(start, otherStart, length);
212}
213
214UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const {
215 U_ASSERT((otherLimit - otherStart) <= INT32_MAX)(void)0; // ensured by caller
216 int32_t length = (int32_t)(limit - start);
217 int32_t otherLength = (int32_t)(otherLimit - otherStart);
218 // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long.
219 if (otherLength < length || (otherLength / 3) > length) {
220 return FALSE0;
221 }
222 // Compare valid strings from between normalization boundaries.
223 // (Invalid sequences are normalization-inert.)
224 for (int32_t i = 0, j = 0;;) {
225 if (i >= length) {
226 return j >= otherLength;
227 } else if (j >= otherLength) {
228 return FALSE0;
229 }
230 // Not at the end of either string yet.
231 UChar32 c, other;
232 U16_NEXT_UNSAFE(start, i, c)do { (c)=(start)[(i)++]; if((((c)&0xfffffc00)==0xd800)) {
(c)=(((UChar32)((c))<<10UL)+(UChar32)((start)[(i)++])-
((0xd800<<10UL)+0xdc00-0x10000)); } } while (false)
;
233 U8_NEXT_UNSAFE(otherStart, j, other)do { (other)=(uint8_t)(otherStart)[(j)++]; if(!(((other)&
0x80)==0)) { if((other)<0xe0) { (other)=(((other)&0x1f
)<<6)|((otherStart)[(j)++]&0x3f); } else if((other)
<0xf0) { (other)=(UChar)(((other)<<12)|(((otherStart
)[j]&0x3f)<<6)|((otherStart)[(j)+1]&0x3f)); (j)
+=2; } else { (other)=(((other)&7)<<18)|(((otherStart
)[j]&0x3f)<<12)|(((otherStart)[(j)+1]&0x3f)<<
6)|((otherStart)[(j)+2]&0x3f); (j)+=3; } } } while (false
)
;
234 if (c != other) {
235 return FALSE0;
236 }
237 }
238}
239
240UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
241 if(remainingCapacity<2 && !resize(2, errorCode)) {
242 return FALSE0;
243 }
244 if(lastCC<=cc || cc==0) {
245 limit[0]=U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0);
246 limit[1]=U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00);
247 limit+=2;
248 lastCC=cc;
249 if(cc<=1) {
250 reorderStart=limit;
251 }
252 } else {
253 insert(c, cc);
254 }
255 remainingCapacity-=2;
256 return TRUE1;
257}
258
259UBool ReorderingBuffer::append(const UChar *s, int32_t length, UBool isNFD,
260 uint8_t leadCC, uint8_t trailCC,
261 UErrorCode &errorCode) {
262 if(length==0) {
263 return TRUE1;
264 }
265 if(remainingCapacity<length && !resize(length, errorCode)) {
266 return FALSE0;
267 }
268 remainingCapacity-=length;
269 if(lastCC<=leadCC || leadCC==0) {
270 if(trailCC<=1) {
271 reorderStart=limit+length;
272 } else if(leadCC<=1) {
273 reorderStart=limit+1; // Ok if not a code point boundary.
274 }
275 const UChar *sLimit=s+length;
276 do { *limit++=*s++; } while(s!=sLimit);
277 lastCC=trailCC;
278 } else {
279 int32_t i=0;
280 UChar32 c;
281 U16_NEXT(s, i, length, c)do { (c)=(s)[(i)++]; if((((c)&0xfffffc00)==0xd800)) { uint16_t
__c2; if((i)!=(length) && (((__c2=(s)[(i)])&0xfffffc00
)==0xdc00)) { ++(i); (c)=(((UChar32)((c))<<10UL)+(UChar32
)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (
false)
;
282 insert(c, leadCC); // insert first code point
283 while(i<length) {
284 U16_NEXT(s, i, length, c)do { (c)=(s)[(i)++]; if((((c)&0xfffffc00)==0xd800)) { uint16_t
__c2; if((i)!=(length) && (((__c2=(s)[(i)])&0xfffffc00
)==0xdc00)) { ++(i); (c)=(((UChar32)((c))<<10UL)+(UChar32
)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); } } } while (
false)
;
285 if(i<length) {
286 if (isNFD) {
287 leadCC = Normalizer2Impl::getCCFromYesOrMaybe(impl.getRawNorm16(c));
288 } else {
289 leadCC = impl.getCC(impl.getNorm16(c));
290 }
291 } else {
292 leadCC=trailCC;
293 }
294 append(c, leadCC, errorCode);
295 }
296 }
297 return TRUE1;
298}
299
300UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
301 int32_t cpLength=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
302 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
303 return FALSE0;
304 }
305 remainingCapacity-=cpLength;
306 if(cpLength==1) {
307 *limit++=(UChar)c;
308 } else {
309 limit[0]=U16_LEAD(c)(UChar)(((c)>>10)+0xd7c0);
310 limit[1]=U16_TRAIL(c)(UChar)(((c)&0x3ff)|0xdc00);
311 limit+=2;
312 }
313 lastCC=0;
314 reorderStart=limit;
315 return TRUE1;
316}
317
318UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
319 if(s==sLimit) {
320 return TRUE1;
321 }
322 int32_t length=(int32_t)(sLimit-s);
323 if(remainingCapacity<length && !resize(length, errorCode)) {
324 return FALSE0;
325 }
326 u_memcpyu_memcpy_71(limit, s, length);
327 limit+=length;
328 remainingCapacity-=length;
329 lastCC=0;
330 reorderStart=limit;
331 return TRUE1;
332}
333
334void ReorderingBuffer::remove() {
335 reorderStart=limit=start;
336 remainingCapacity=str.getCapacity();
337 lastCC=0;
338}
339
340void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
341 if(suffixLength<(limit-start)) {
342 limit-=suffixLength;
343 remainingCapacity+=suffixLength;
344 } else {
345 limit=start;
346 remainingCapacity=str.getCapacity();
347 }
348 lastCC=0;
349 reorderStart=limit;
350}
351
352UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
353 int32_t reorderStartIndex=(int32_t)(reorderStart-start);
354 int32_t length=(int32_t)(limit-start);
355 str.releaseBuffer(length);
356 int32_t newCapacity=length+appendLength;
357 int32_t doubleCapacity=2*str.getCapacity();
358 if(newCapacity<doubleCapacity) {
359 newCapacity=doubleCapacity;
360 }
361 if(newCapacity<256) {
362 newCapacity=256;
363 }
364 start=str.getBuffer(newCapacity);
365 if(start==NULL__null) {
366 // getBuffer() already did str.setToBogus()
367 errorCode=U_MEMORY_ALLOCATION_ERROR;
368 return FALSE0;
369 }
370 reorderStart=start+reorderStartIndex;
371 limit=start+length;
372 remainingCapacity=str.getCapacity()-length;
373 return TRUE1;
374}
375
376void ReorderingBuffer::skipPrevious() {
377 codePointLimit=codePointStart;
378 UChar c=*--codePointStart;
379 if(U16_IS_TRAIL(c)(((c)&0xfffffc00)==0xdc00) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))(((*(codePointStart-1))&0xfffffc00)==0xd800)) {
380 --codePointStart;
381 }
382}
383
384uint8_t ReorderingBuffer::previousCC() {
385 codePointLimit=codePointStart;
386 if(reorderStart>=codePointStart) {
387 return 0;
388 }
389 UChar32 c=*--codePointStart;
390 UChar c2;
391 if(U16_IS_TRAIL(c)(((c)&0xfffffc00)==0xdc00) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))(((c2=*(codePointStart-1))&0xfffffc00)==0xd800)) {
392 --codePointStart;
393 c=U16_GET_SUPPLEMENTARY(c2, c)(((UChar32)(c2)<<10UL)+(UChar32)(c)-((0xd800<<10UL
)+0xdc00-0x10000))
;
394 }
395 return impl.getCCFromYesOrMaybeCP(c);
396}
397
398// Inserts c somewhere before the last character.
399// Requires 0<cc<lastCC which implies reorderStart<limit.
400void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
401 for(setIterator(), skipPrevious(); previousCC()>cc;) {}
402 // insert c at codePointLimit, after the character with prevCC<=cc
403 UChar *q=limit;
404 UChar *r=limit+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
405 do {
406 *--r=*--q;
407 } while(codePointLimit!=q);
408 writeCodePoint(q, c);
409 if(cc<=1) {
410 reorderStart=r;
411 }
412}
413
414// Normalizer2Impl --------------------------------------------------------- ***
415
416struct CanonIterData : public UMemory {
417 CanonIterData(UErrorCode &errorCode);
418 ~CanonIterData();
419 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
420 UMutableCPTrie *mutableTrie;
421 UCPTrie *trie;
422 UVector canonStartSets; // contains UnicodeSet *
423};
424
425Normalizer2Impl::~Normalizer2Impl() {
426 delete fCanonIterData;
427}
428
429void
430Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie,
431 const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
432 minDecompNoCP = static_cast<UChar>(inIndexes[IX_MIN_DECOMP_NO_CP]);
433 minCompNoMaybeCP = static_cast<UChar>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]);
434 minLcccCP = static_cast<UChar>(inIndexes[IX_MIN_LCCC_CP]);
435
436 minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]);
437 minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]);
438 minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]);
439 minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]);
440 minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]);
441 minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]);
442 limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]);
443 minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]);
444 U_ASSERT((minMaybeYes & 7) == 0)(void)0; // 8-aligned for noNoDelta bit fields
445 centerNoNoDelta = (minMaybeYes >> DELTA_SHIFT) - MAX_DELTA - 1;
446
447 normTrie=inTrie;
448
449 maybeYesCompositions=inExtraData;
450 extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT);
451
452 smallFCD=inSmallFCD;
453}
454
455U_CDECL_BEGINextern "C" {
456
457static uint32_t U_CALLCONV
458segmentStarterMapper(const void * /*context*/, uint32_t value) {
459 return value&CANON_NOT_SEGMENT_STARTER0x80000000;
460}
461
462U_CDECL_END}
463
464void
465Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
466 UChar32 start = 0, end;
467 uint32_t norm16;
468 while ((end = ucptrie_getRangeucptrie_getRange_71(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
469 nullptr, nullptr, &norm16)) >= 0) {
470 if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES &&
471 norm16 != Normalizer2Impl::JAMO_VT) {
472 set.add(start, end);
473 } else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) {
474 uint16_t fcd16 = getFCD16(start);
475 if (fcd16 > 0xff) { set.add(start, end); }
476 }
477 start = end + 1;
478 }
479}
480
481void
482Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
483 // Add the start code point of each same-value range of the trie.
484 UChar32 start = 0, end;
485 uint32_t value;
486 while ((end = ucptrie_getRangeucptrie_getRange_71(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
487 nullptr, nullptr, &value)) >= 0) {
488 sa->add(sa->set, start);
489 if (start != end && isAlgorithmicNoNo((uint16_t)value) &&
490 (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) {
491 // Range of code points with same-norm16-value algorithmic decompositions.
492 // They might have different non-zero FCD16 values.
493 uint16_t prevFCD16 = getFCD16(start);
494 while (++start <= end) {
495 uint16_t fcd16 = getFCD16(start);
496 if (fcd16 != prevFCD16) {
497 sa->add(sa->set, start);
498 prevFCD16 = fcd16;
499 }
500 }
501 }
502 start = end + 1;
503 }
504
505 /* add Hangul LV syllables and LV+1 because of skippables */
506 for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
507 sa->add(sa->set, c);
508 sa->add(sa->set, c+1);
509 }
510 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
511}
512
513void
514Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
515 // Add the start code point of each same-value range of the canonical iterator data trie.
516 if (!ensureCanonIterData(errorCode)) { return; }
517 // Currently only used for the SEGMENT_STARTER property.
518 UChar32 start = 0, end;
519 uint32_t value;
520 while ((end = ucptrie_getRangeucptrie_getRange_71(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0,
521 segmentStarterMapper, nullptr, &value)) >= 0) {
522 sa->add(sa->set, start);
523 start = end + 1;
524 }
525}
526
527const UChar *
528Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
529 UChar32 minNeedDataCP,
530 ReorderingBuffer *buffer,
531 UErrorCode &errorCode) const {
532 // Make some effort to support NUL-terminated strings reasonably.
533 // Take the part of the fast quick check loop that does not look up
534 // data and check the first part of the string.
535 // After this prefix, determine the string length to simplify the rest
536 // of the code.
537 const UChar *prevSrc=src;
538 UChar c;
539 while((c=*src++)<minNeedDataCP && c!=0) {}
540 // Back out the last character for full processing.
541 // Copy this prefix.
542 if(--src!=prevSrc) {
543 if(buffer!=NULL__null) {
544 buffer->appendZeroCC(prevSrc, src, errorCode);
545 }
546 }
547 return src;
548}
549
550UnicodeString &
551Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
552 UErrorCode &errorCode) const {
553 if(U_FAILURE(errorCode)) {
554 dest.setToBogus();
555 return dest;
556 }
557 const UChar *sArray=src.getBuffer();
558 if(&dest==&src || sArray==NULL__null) {
559 errorCode=U_ILLEGAL_ARGUMENT_ERROR;
560 dest.setToBogus();
561 return dest;
562 }
563 decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
564 return dest;
565}
566
567void
568Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
569 UnicodeString &dest,
570 int32_t destLengthEstimate,
571 UErrorCode &errorCode) const {
572 if(destLengthEstimate<0 && limit!=NULL__null) {
573 destLengthEstimate=(int32_t)(limit-src);
574 }
575 dest.remove();
576 ReorderingBuffer buffer(*this, dest);
577 if(buffer.init(destLengthEstimate, errorCode)) {
578 decompose(src, limit, &buffer, errorCode);
579 }
580}
581
582// Dual functionality:
583// buffer!=NULL: normalize
584// buffer==NULL: isNormalized/spanQuickCheckYes
585const UChar *
586Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
587 ReorderingBuffer *buffer,
588 UErrorCode &errorCode) const {
589 UChar32 minNoCP=minDecompNoCP;
590 if(limit==NULL__null) {
591 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
592 if(U_FAILURE(errorCode)) {
593 return src;
594 }
595 limit=u_strchru_strchr_71(src, 0);
596 }
597
598 const UChar *prevSrc;
599 UChar32 c=0;
600 uint16_t norm16=0;
601
602 // only for quick check
603 const UChar *prevBoundary=src;
604 uint8_t prevCC=0;
605
606 for(;;) {
607 // count code units below the minimum or with irrelevant data for the quick check
608 for(prevSrc=src; src!=limit;) {
609 if( (c=*src)<minNoCP ||
610 isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((int32_t)(normTrie)->index[(c)
>> UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK
))])
)
611 ) {
612 ++src;
613 } else if(!U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
614 break;
615 } else {
616 UChar c2;
617 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])(((c2=src[1])&0xfffffc00)==0xdc00)) {
618 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
619 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((c) >= (normTrie)->highStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c))])
;
620 if(isMostDecompYesAndZeroCC(norm16)) {
621 src+=2;
622 } else {
623 break;
624 }
625 } else {
626 ++src; // unpaired lead surrogate: inert
627 }
628 }
629 }
630 // copy these code units all at once
631 if(src!=prevSrc) {
632 if(buffer!=NULL__null) {
633 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
634 break;
635 }
636 } else {
637 prevCC=0;
638 prevBoundary=src;
639 }
640 }
641 if(src==limit) {
642 break;
643 }
644
645 // Check one above-minimum, relevant code point.
646 src+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
647 if(buffer!=NULL__null) {
648 if(!decompose(c, norm16, *buffer, errorCode)) {
649 break;
650 }
651 } else {
652 if(isDecompYes(norm16)) {
653 uint8_t cc=getCCFromYesOrMaybe(norm16);
654 if(prevCC<=cc || cc==0) {
655 prevCC=cc;
656 if(cc<=1) {
657 prevBoundary=src;
658 }
659 continue;
660 }
661 }
662 return prevBoundary; // "no" or cc out of order
663 }
664 }
665 return src;
666}
667
668// Decompose a short piece of text which is likely to contain characters that
669// fail the quick check loop and/or where the quick check loop's overhead
670// is unlikely to be amortized.
671// Called by the compose() and makeFCD() implementations.
672const UChar *
673Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
674 UBool stopAtCompBoundary, UBool onlyContiguous,
675 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
676 if (U_FAILURE(errorCode)) {
677 return nullptr;
678 }
679 while(src<limit) {
680 if (stopAtCompBoundary && *src < minCompNoMaybeCP) {
681 return src;
682 }
683 const UChar *prevSrc = src;
684 UChar32 c;
685 uint16_t norm16;
686 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16)do { (c) = *(src)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (src
) != (limit) && (((__c2 = *(src))&0xfffffc00)==0xdc00
)) { ++(src); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
687 if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) {
688 return prevSrc;
689 }
690 if(!decompose(c, norm16, buffer, errorCode)) {
691 return nullptr;
692 }
693 if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
694 return src;
695 }
696 }
697 return src;
698}
699
700UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
701 ReorderingBuffer &buffer,
702 UErrorCode &errorCode) const {
703 // get the decomposition and the lead and trail cc's
704 if (norm16 >= limitNoNo) {
705 if (isMaybeOrNonZeroCC(norm16)) {
706 return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
707 }
708 // Maps to an isCompYesAndZeroCC.
709 c=mapAlgorithmic(c, norm16);
710 norm16=getRawNorm16(c);
711 }
712 if (norm16 < minYesNo) {
713 // c does not decompose
714 return buffer.append(c, 0, errorCode);
715 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
716 // Hangul syllable: decompose algorithmically
717 UChar jamos[3];
718 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
719 }
720 // c decomposes, get everything from the variable-length extra data
721 const uint16_t *mapping=getMapping(norm16);
722 uint16_t firstUnit=*mapping;
723 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
724 uint8_t leadCC, trailCC;
725 trailCC=(uint8_t)(firstUnit>>8);
726 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
727 leadCC=(uint8_t)(*(mapping-1)>>8);
728 } else {
729 leadCC=0;
730 }
731 return buffer.append((const UChar *)mapping+1, length, TRUE1, leadCC, trailCC, errorCode);
732}
733
734// Dual functionality:
735// sink != nullptr: normalize
736// sink == nullptr: isNormalized/spanQuickCheckYes
737const uint8_t *
738Normalizer2Impl::decomposeUTF8(uint32_t options,
739 const uint8_t *src, const uint8_t *limit,
740 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
741 U_ASSERT(limit != nullptr)(void)0;
742 UnicodeString s16;
743 uint8_t minNoLead = leadByteForCP(minDecompNoCP);
744
745 const uint8_t *prevBoundary = src;
746 // only for quick check
747 uint8_t prevCC = 0;
748
749 for (;;) {
750 // Fast path: Scan over a sequence of characters below the minimum "no" code point,
751 // or with (decompYes && ccc==0) properties.
752 const uint8_t *fastStart = src;
753 const uint8_t *prevSrc;
754 uint16_t norm16 = 0;
755
756 for (;;) {
757 if (src == limit) {
758 if (prevBoundary != limit && sink != nullptr) {
759 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
760 *sink, options, edits, errorCode);
761 }
762 return src;
763 }
764 if (*src < minNoLead) {
765 ++src;
766 } else {
767 prevSrc = src;
768 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_71((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
769 if (!isMostDecompYesAndZeroCC(norm16)) {
770 break;
771 }
772 }
773 }
774 // isMostDecompYesAndZeroCC(norm16) is false, that is, norm16>=minYesNo,
775 // and the current character at [prevSrc..src[ is not a common case with cc=0
776 // (MIN_NORMAL_MAYBE_YES or JAMO_VT).
777 // It could still be a maybeYes with cc=0.
778 if (prevSrc != fastStart) {
779 // The fast path looped over yes/0 characters before the current one.
780 if (sink != nullptr &&
781 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
782 *sink, options, edits, errorCode)) {
783 break;
784 }
785 prevBoundary = prevSrc;
786 prevCC = 0;
787 }
788
789 // Medium-fast path: Quick check.
790 if (isMaybeOrNonZeroCC(norm16)) {
791 // Does not decompose.
792 uint8_t cc = getCCFromYesOrMaybe(norm16);
793 if (prevCC <= cc || cc == 0) {
794 prevCC = cc;
795 if (cc <= 1) {
796 if (sink != nullptr &&
797 !ByteSinkUtil::appendUnchanged(prevBoundary, src,
798 *sink, options, edits, errorCode)) {
799 break;
800 }
801 prevBoundary = src;
802 }
803 continue;
804 }
805 }
806 if (sink == nullptr) {
807 return prevBoundary; // quick check: "no" or cc out of order
808 }
809
810 // Slow path
811 // Decompose up to and including the current character.
812 if (prevBoundary != prevSrc && norm16HasDecompBoundaryBefore(norm16)) {
813 if (!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
814 *sink, options, edits, errorCode)) {
815 break;
816 }
817 prevBoundary = prevSrc;
818 }
819 ReorderingBuffer buffer(*this, s16, errorCode);
820 if (U_FAILURE(errorCode)) {
821 break;
822 }
823 decomposeShort(prevBoundary, src, STOP_AT_LIMIT, FALSE0 /* onlyContiguous */,
824 buffer, errorCode);
825 // Decompose until the next boundary.
826 if (buffer.getLastCC() > 1) {
827 src = decomposeShort(src, limit, STOP_AT_DECOMP_BOUNDARY, FALSE0 /* onlyContiguous */,
828 buffer, errorCode);
829 }
830 if (U_FAILURE(errorCode)) {
831 break;
832 }
833 if ((src - prevSrc) > INT32_MAX(2147483647)) { // guard before buffer.equals()
834 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
835 break;
836 }
837 // We already know there was a change if the original character decomposed;
838 // otherwise compare.
839 if (isMaybeOrNonZeroCC(norm16) && buffer.equals(prevBoundary, src)) {
840 if (!ByteSinkUtil::appendUnchanged(prevBoundary, src,
841 *sink, options, edits, errorCode)) {
842 break;
843 }
844 } else {
845 if (!ByteSinkUtil::appendChange(prevBoundary, src, buffer.getStart(), buffer.length(),
846 *sink, edits, errorCode)) {
847 break;
848 }
849 }
850 prevBoundary = src;
851 prevCC = 0;
852 }
853 return src;
854}
855
856const uint8_t *
857Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit,
858 StopAt stopAt, UBool onlyContiguous,
859 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
860 if (U_FAILURE(errorCode)) {
861 return nullptr;
862 }
863 while (src < limit) {
864 const uint8_t *prevSrc = src;
865 uint16_t norm16;
866 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_71((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
867 // Get the decomposition and the lead and trail cc's.
868 UChar32 c = U_SENTINEL(-1);
869 if (norm16 >= limitNoNo) {
870 if (isMaybeOrNonZeroCC(norm16)) {
871 // No comp boundaries around this character.
872 uint8_t cc = getCCFromYesOrMaybe(norm16);
873 if (cc == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
874 return prevSrc;
875 }
876 c = codePointFromValidUTF8(prevSrc, src);
877 if (!buffer.append(c, cc, errorCode)) {
878 return nullptr;
879 }
880 if (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1) {
881 return src;
882 }
883 continue;
884 }
885 // Maps to an isCompYesAndZeroCC.
886 if (stopAt != STOP_AT_LIMIT) {
887 return prevSrc;
888 }
889 c = codePointFromValidUTF8(prevSrc, src);
890 c = mapAlgorithmic(c, norm16);
891 norm16 = getRawNorm16(c);
892 } else if (stopAt != STOP_AT_LIMIT && norm16 < minNoNoCompNoMaybeCC) {
893 return prevSrc;
894 }
895 // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8.
896 // We do not see invalid UTF-8 here because
897 // its norm16==INERT is normalization-inert,
898 // so it gets copied unchanged in the fast path,
899 // and we stop the slow path where invalid UTF-8 begins.
900 // c >= 0 is the result of an algorithmic mapping.
901 U_ASSERT(c >= 0 || norm16 != INERT)(void)0;
902 if (norm16 < minYesNo) {
903 if (c < 0) {
904 c = codePointFromValidUTF8(prevSrc, src);
905 }
906 // does not decompose
907 if (!buffer.append(c, 0, errorCode)) {
908 return nullptr;
909 }
910 } else if (isHangulLV(norm16) || isHangulLVT(norm16)) {
911 // Hangul syllable: decompose algorithmically
912 if (c < 0) {
913 c = codePointFromValidUTF8(prevSrc, src);
914 }
915 char16_t jamos[3];
916 if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) {
917 return nullptr;
918 }
919 } else {
920 // The character decomposes, get everything from the variable-length extra data.
921 const uint16_t *mapping = getMapping(norm16);
922 uint16_t firstUnit = *mapping;
923 int32_t length = firstUnit & MAPPING_LENGTH_MASK;
924 uint8_t trailCC = (uint8_t)(firstUnit >> 8);
925 uint8_t leadCC;
926 if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) {
927 leadCC = (uint8_t)(*(mapping-1) >> 8);
928 } else {
929 leadCC = 0;
930 }
931 if (leadCC == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
932 return prevSrc;
933 }
934 if (!buffer.append((const char16_t *)mapping+1, length, TRUE1, leadCC, trailCC, errorCode)) {
935 return nullptr;
936 }
937 }
938 if ((stopAt == STOP_AT_COMP_BOUNDARY && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) ||
939 (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1)) {
940 return src;
941 }
942 }
943 return src;
944}
945
946const UChar *
947Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
948 uint16_t norm16;
949 if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) {
950 // c does not decompose
951 return nullptr;
952 }
953 const UChar *decomp = nullptr;
954 if(isDecompNoAlgorithmic(norm16)) {
955 // Maps to an isCompYesAndZeroCC.
956 c=mapAlgorithmic(c, norm16);
957 decomp=buffer;
958 length=0;
959 U16_APPEND_UNSAFE(buffer, length, c)do { if((uint32_t)(c)<=0xffff) { (buffer)[(length)++]=(uint16_t
)(c); } else { (buffer)[(length)++]=(uint16_t)(((c)>>10
)+0xd7c0); (buffer)[(length)++]=(uint16_t)(((c)&0x3ff)|0xdc00
); } } while (false)
;
960 // The mapping might decompose further.
961 norm16 = getRawNorm16(c);
962 }
963 if (norm16 < minYesNo) {
964 return decomp;
965 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
966 // Hangul syllable: decompose algorithmically
967 length=Hangul::decompose(c, buffer);
968 return buffer;
969 }
970 // c decomposes, get everything from the variable-length extra data
971 const uint16_t *mapping=getMapping(norm16);
972 length=*mapping&MAPPING_LENGTH_MASK;
973 return (const UChar *)mapping+1;
974}
975
976// The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
977// so that a raw mapping fits that consists of one unit ("rm0")
978// plus all but the first two code units of the normal mapping.
979// The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
980const UChar *
981Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const {
982 uint16_t norm16;
983 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
984 // c does not decompose
985 return NULL__null;
986 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
987 // Hangul syllable: decompose algorithmically
988 Hangul::getRawDecomposition(c, buffer);
989 length=2;
990 return buffer;
991 } else if(isDecompNoAlgorithmic(norm16)) {
992 c=mapAlgorithmic(c, norm16);
993 length=0;
994 U16_APPEND_UNSAFE(buffer, length, c)do { if((uint32_t)(c)<=0xffff) { (buffer)[(length)++]=(uint16_t
)(c); } else { (buffer)[(length)++]=(uint16_t)(((c)>>10
)+0xd7c0); (buffer)[(length)++]=(uint16_t)(((c)&0x3ff)|0xdc00
); } } while (false)
;
995 return buffer;
996 }
997 // c decomposes, get everything from the variable-length extra data
998 const uint16_t *mapping=getMapping(norm16);
999 uint16_t firstUnit=*mapping;
1000 int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
1001 if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
1002 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
1003 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
1004 const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
1005 uint16_t rm0=*rawMapping;
1006 if(rm0<=MAPPING_LENGTH_MASK) {
1007 length=rm0;
1008 return (const UChar *)rawMapping-rm0;
1009 } else {
1010 // Copy the normal mapping and replace its first two code units with rm0.
1011 buffer[0]=(UChar)rm0;
1012 u_memcpyu_memcpy_71(buffer+1, (const UChar *)mapping+1+2, mLength-2);
1013 length=mLength-1;
1014 return buffer;
1015 }
1016 } else {
1017 length=mLength;
1018 return (const UChar *)mapping+1;
1019 }
1020}
1021
1022void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
1023 UBool doDecompose,
1024 UnicodeString &safeMiddle,
1025 ReorderingBuffer &buffer,
1026 UErrorCode &errorCode) const {
1027 buffer.copyReorderableSuffixTo(safeMiddle);
1028 if(doDecompose) {
1029 decompose(src, limit, &buffer, errorCode);
1030 return;
1031 }
1032 // Just merge the strings at the boundary.
1033 bool isFirst = true;
1034 uint8_t firstCC = 0, prevCC = 0, cc;
1035 const UChar *p = src;
1036 while (p != limit) {
1037 const UChar *codePointStart = p;
1038 UChar32 c;
1039 uint16_t norm16;
1040 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
1041 if ((cc = getCC(norm16)) == 0) {
1042 p = codePointStart;
1043 break;
1044 }
1045 if (isFirst) {
1046 firstCC = cc;
1047 isFirst = false;
1048 }
1049 prevCC = cc;
1050 }
1051 if(limit==NULL__null) { // appendZeroCC() needs limit!=NULL
1052 limit=u_strchru_strchr_71(p, 0);
1053 }
1054
1055 if (buffer.append(src, (int32_t)(p - src), FALSE0, firstCC, prevCC, errorCode)) {
1056 buffer.appendZeroCC(p, limit, errorCode);
1057 }
1058}
1059
1060UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const {
1061 return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) ||
1062 norm16HasDecompBoundaryBefore(getNorm16(c));
1063}
1064
1065UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const {
1066 if (norm16 < minNoNoCompNoMaybeCC) {
1067 return TRUE1;
1068 }
1069 if (norm16 >= limitNoNo) {
1070 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
1071 }
1072 // c decomposes, get everything from the variable-length extra data
1073 const uint16_t *mapping=getMapping(norm16);
1074 uint16_t firstUnit=*mapping;
1075 // TRUE if leadCC==0 (hasFCDBoundaryBefore())
1076 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
1077}
1078
1079UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const {
1080 if (c < minDecompNoCP) {
1081 return TRUE1;
1082 }
1083 if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) {
1084 return TRUE1;
1085 }
1086 return norm16HasDecompBoundaryAfter(getNorm16(c));
1087}
1088
1089UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const {
1090 if(norm16 <= minYesNo || isHangulLVT(norm16)) {
1091 return TRUE1;
1092 }
1093 if (norm16 >= limitNoNo) {
1094 if (isMaybeOrNonZeroCC(norm16)) {
1095 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
1096 }
1097 // Maps to an isCompYesAndZeroCC.
1098 return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1;
1099 }
1100 // c decomposes, get everything from the variable-length extra data
1101 const uint16_t *mapping=getMapping(norm16);
1102 uint16_t firstUnit=*mapping;
1103 // decomp after-boundary: same as hasFCDBoundaryAfter(),
1104 // fcd16<=1 || trailCC==0
1105 if(firstUnit>0x1ff) {
1106 return FALSE0; // trailCC>1
1107 }
1108 if(firstUnit<=0xff) {
1109 return TRUE1; // trailCC==0
1110 }
1111 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
1112 // TRUE if leadCC==0 (hasFCDBoundaryBefore())
1113 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
1114}
1115
1116/*
1117 * Finds the recomposition result for
1118 * a forward-combining "lead" character,
1119 * specified with a pointer to its compositions list,
1120 * and a backward-combining "trail" character.
1121 *
1122 * If the lead and trail characters combine, then this function returns
1123 * the following "compositeAndFwd" value:
1124 * Bits 21..1 composite character
1125 * Bit 0 set if the composite is a forward-combining starter
1126 * otherwise it returns -1.
1127 *
1128 * The compositions list has (trail, compositeAndFwd) pair entries,
1129 * encoded as either pairs or triples of 16-bit units.
1130 * The last entry has the high bit of its first unit set.
1131 *
1132 * The list is sorted by ascending trail characters (there are no duplicates).
1133 * A linear search is used.
1134 *
1135 * See normalizer2impl.h for a more detailed description
1136 * of the compositions list format.
1137 */
1138int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
1139 uint16_t key1, firstUnit;
1140 if(trail<COMP_1_TRAIL_LIMIT) {
1141 // trail character is 0..33FF
1142 // result entry may have 2 or 3 units
1143 key1=(uint16_t)(trail<<1);
1144 while(key1>(firstUnit=*list)) {
1145 list+=2+(firstUnit&COMP_1_TRIPLE);
1146 }
1147 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1148 if(firstUnit&COMP_1_TRIPLE) {
1149 return ((int32_t)list[1]<<16)|list[2];
1150 } else {
1151 return list[1];
1152 }
1153 }
1154 } else {
1155 // trail character is 3400..10FFFF
1156 // result entry has 3 units
1157 key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
1158 (((trail>>COMP_1_TRAIL_SHIFT))&
1159 ~COMP_1_TRIPLE));
1160 uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
1161 uint16_t secondUnit;
1162 for(;;) {
1163 if(key1>(firstUnit=*list)) {
1164 list+=2+(firstUnit&COMP_1_TRIPLE);
1165 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1166 if(key2>(secondUnit=list[1])) {
1167 if(firstUnit&COMP_1_LAST_TUPLE) {
1168 break;
1169 } else {
1170 list+=3;
1171 }
1172 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
1173 return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
1174 } else {
1175 break;
1176 }
1177 } else {
1178 break;
1179 }
1180 }
1181 }
1182 return -1;
1183}
1184
1185/**
1186 * @param list some character's compositions list
1187 * @param set recursively receives the composites from these compositions
1188 */
1189void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
1190 uint16_t firstUnit;
1191 int32_t compositeAndFwd;
1192 do {
1193 firstUnit=*list;
1194 if((firstUnit&COMP_1_TRIPLE)==0) {
1195 compositeAndFwd=list[1];
1196 list+=2;
1197 } else {
1198 compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
1199 list+=3;
1200 }
1201 UChar32 composite=compositeAndFwd>>1;
1202 if((compositeAndFwd&1)!=0) {
1203 addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set);
1204 }
1205 set.add(composite);
1206 } while((firstUnit&COMP_1_LAST_TUPLE)==0);
1207}
1208
1209/*
1210 * Recomposes the buffer text starting at recomposeStartIndex
1211 * (which is in NFD - decomposed and canonically ordered),
1212 * and truncates the buffer contents.
1213 *
1214 * Note that recomposition never lengthens the text:
1215 * Any character consists of either one or two code units;
1216 * a composition may contain at most one more code unit than the original starter,
1217 * while the combining mark that is removed has at least one code unit.
1218 */
1219void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
1220 UBool onlyContiguous) const {
1221 UChar *p=buffer.getStart()+recomposeStartIndex;
1222 UChar *limit=buffer.getLimit();
1223 if(p==limit) {
1224 return;
1225 }
1226
1227 UChar *starter, *pRemove, *q, *r;
1228 const uint16_t *compositionsList;
1229 UChar32 c, compositeAndFwd;
1230 uint16_t norm16;
1231 uint8_t cc, prevCC;
1232 UBool starterIsSupplementary;
1233
1234 // Some of the following variables are not used until we have a forward-combining starter
1235 // and are only initialized now to avoid compiler warnings.
1236 compositionsList=NULL__null; // used as indicator for whether we have a forward-combining starter
1237 starter=NULL__null;
1238 starterIsSupplementary=FALSE0;
1239 prevCC=0;
1240
1241 for(;;) {
1242 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
1243 cc=getCCFromYesOrMaybe(norm16);
1244 if( // this character combines backward and
1245 isMaybe(norm16) &&
1246 // we have seen a starter that combines forward and
1247 compositionsList!=NULL__null &&
1248 // the backward-combining character is not blocked
1249 (prevCC<cc || prevCC==0)
1250 ) {
1251 if(isJamoVT(norm16)) {
1252 // c is a Jamo V/T, see if we can compose it with the previous character.
1253 if(c<Hangul::JAMO_T_BASE) {
1254 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
1255 UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
1256 if(prev<Hangul::JAMO_L_COUNT) {
1257 pRemove=p-1;
1258 UChar syllable=(UChar)
1259 (Hangul::HANGUL_BASE+
1260 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
1261 Hangul::JAMO_T_COUNT);
1262 UChar t;
1263 if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
1264 ++p;
1265 syllable+=t; // The next character was a Jamo T.
1266 }
1267 *starter=syllable;
1268 // remove the Jamo V/T
1269 q=pRemove;
1270 r=p;
1271 while(r<limit) {
1272 *q++=*r++;
1273 }
1274 limit=q;
1275 p=pRemove;
1276 }
1277 }
1278 /*
1279 * No "else" for Jamo T:
1280 * Since the input is in NFD, there are no Hangul LV syllables that
1281 * a Jamo T could combine with.
1282 * All Jamo Ts are combined above when handling Jamo Vs.
1283 */
1284 if(p==limit) {
1285 break;
1286 }
1287 compositionsList=NULL__null;
1288 continue;
1289 } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
1290 // The starter and the combining mark (c) do combine.
1291 UChar32 composite=compositeAndFwd>>1;
1292
1293 // Replace the starter with the composite, remove the combining mark.
1294 pRemove=p-U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2); // pRemove & p: start & limit of the combining mark
1295 if(starterIsSupplementary) {
1296 if(U_IS_SUPPLEMENTARY(composite)((uint32_t)((composite)-0x10000)<=0xfffff)) {
1297 // both are supplementary
1298 starter[0]=U16_LEAD(composite)(UChar)(((composite)>>10)+0xd7c0);
1299 starter[1]=U16_TRAIL(composite)(UChar)(((composite)&0x3ff)|0xdc00);
1300 } else {
1301 *starter=(UChar)composite;
1302 // The composite is shorter than the starter,
1303 // move the intermediate characters forward one.
1304 starterIsSupplementary=FALSE0;
1305 q=starter+1;
1306 r=q+1;
1307 while(r<pRemove) {
1308 *q++=*r++;
1309 }
1310 --pRemove;
1311 }
1312 } else if(U_IS_SUPPLEMENTARY(composite)((uint32_t)((composite)-0x10000)<=0xfffff)) {
1313 // The composite is longer than the starter,
1314 // move the intermediate characters back one.
1315 starterIsSupplementary=TRUE1;
1316 ++starter; // temporarily increment for the loop boundary
1317 q=pRemove;
1318 r=++pRemove;
1319 while(starter<q) {
1320 *--r=*--q;
1321 }
1322 *starter=U16_TRAIL(composite)(UChar)(((composite)&0x3ff)|0xdc00);
1323 *--starter=U16_LEAD(composite)(UChar)(((composite)>>10)+0xd7c0); // undo the temporary increment
1324 } else {
1325 // both are on the BMP
1326 *starter=(UChar)composite;
1327 }
1328
1329 /* remove the combining mark by moving the following text over it */
1330 if(pRemove<p) {
1331 q=pRemove;
1332 r=p;
1333 while(r<limit) {
1334 *q++=*r++;
1335 }
1336 limit=q;
1337 p=pRemove;
1338 }
1339 // Keep prevCC because we removed the combining mark.
1340
1341 if(p==limit) {
1342 break;
1343 }
1344 // Is the composite a starter that combines forward?
1345 if(compositeAndFwd&1) {
1346 compositionsList=
1347 getCompositionsListForComposite(getRawNorm16(composite));
1348 } else {
1349 compositionsList=NULL__null;
1350 }
1351
1352 // We combined; continue with looking for compositions.
1353 continue;
1354 }
1355 }
1356
1357 // no combination this time
1358 prevCC=cc;
1359 if(p==limit) {
1360 break;
1361 }
1362
1363 // If c did not combine, then check if it is a starter.
1364 if(cc==0) {
1365 // Found a new starter.
1366 if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL__null) {
1367 // It may combine with something, prepare for it.
1368 if(U_IS_BMP(c)((uint32_t)(c)<=0xffff)) {
1369 starterIsSupplementary=FALSE0;
1370 starter=p-1;
1371 } else {
1372 starterIsSupplementary=TRUE1;
1373 starter=p-2;
1374 }
1375 }
1376 } else if(onlyContiguous) {
1377 // FCC: no discontiguous compositions; any intervening character blocks.
1378 compositionsList=NULL__null;
1379 }
1380 }
1381 buffer.setReorderingLimit(limit);
1382}
1383
1384UChar32
1385Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
1386 uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16
1387 const uint16_t *list;
1388 if(isInert(norm16)) {
1389 return U_SENTINEL(-1);
1390 } else if(norm16<minYesNoMappingsOnly) {
1391 // a combines forward.
1392 if(isJamoL(norm16)) {
1393 b-=Hangul::JAMO_V_BASE;
1394 if(0<=b && b<Hangul::JAMO_V_COUNT) {
1395 return
1396 (Hangul::HANGUL_BASE+
1397 ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
1398 Hangul::JAMO_T_COUNT);
1399 } else {
1400 return U_SENTINEL(-1);
1401 }
1402 } else if(isHangulLV(norm16)) {
1403 b-=Hangul::JAMO_T_BASE;
1404 if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0!
1405 return a+b;
1406 } else {
1407 return U_SENTINEL(-1);
1408 }
1409 } else {
1410 // 'a' has a compositions list in extraData
1411 list=getMapping(norm16);
1412 if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
1413 list+= // mapping pointer
1414 1+ // +1 to skip the first unit with the mapping length
1415 (*list&MAPPING_LENGTH_MASK); // + mapping length
1416 }
1417 }
1418 } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
1419 return U_SENTINEL(-1);
1420 } else {
1421 list=getCompositionsListForMaybe(norm16);
1422 }
1423 if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
1424 return U_SENTINEL(-1);
1425 }
1426#if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC1
1427 return combine(list, b)>>1;
1428#else
1429 int32_t compositeAndFwd=combine(list, b);
1430 return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL(-1);
1431#endif
1432}
1433
1434// Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
1435// doCompose: normalize
1436// !doCompose: isNormalized (buffer must be empty and initialized)
1437UBool
1438Normalizer2Impl::compose(const UChar *src, const UChar *limit,
1439 UBool onlyContiguous,
1440 UBool doCompose,
1441 ReorderingBuffer &buffer,
1442 UErrorCode &errorCode) const {
1443 const UChar *prevBoundary=src;
1444 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1445 if(limit==NULL__null) {
1446 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
1447 doCompose ? &buffer : NULL__null,
1448 errorCode);
1449 if(U_FAILURE(errorCode)) {
1450 return FALSE0;
1451 }
1452 limit=u_strchru_strchr_71(src, 0);
1453 if (prevBoundary != src) {
1454 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1455 prevBoundary = src;
1456 } else {
1457 buffer.removeSuffix(1);
1458 prevBoundary = --src;
1459 }
1460 }
1461 }
1462
1463 for (;;) {
1464 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1465 // or with (compYes && ccc==0) properties.
1466 const UChar *prevSrc;
1467 UChar32 c = 0;
1468 uint16_t norm16 = 0;
1469 for (;;) {
1470 if (src == limit) {
1471 if (prevBoundary != limit && doCompose) {
1472 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1473 }
1474 return TRUE1;
1475 }
1476 if( (c=*src)<minNoMaybeCP ||
1477 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((int32_t)(normTrie)->index[(c)
>> UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK
))])
)
1478 ) {
1479 ++src;
1480 } else {
1481 prevSrc = src++;
1482 if(!U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
1483 break;
1484 } else {
1485 UChar c2;
1486 if(src!=limit && U16_IS_TRAIL(c2=*src)(((c2=*src)&0xfffffc00)==0xdc00)) {
1487 ++src;
1488 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
1489 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((c) >= (normTrie)->highStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c))])
;
1490 if(!isCompYesAndZeroCC(norm16)) {
1491 break;
1492 }
1493 }
1494 }
1495 }
1496 }
1497 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1498 // The current character is either a "noNo" (has a mapping)
1499 // or a "maybeYes" (combines backward)
1500 // or a "yesYes" with ccc!=0.
1501 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1502
1503 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1504 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1505 if (!doCompose) {
1506 return FALSE0;
1507 }
1508 // Fast path for mapping a character that is immediately surrounded by boundaries.
1509 // In this case, we need not decompose around the current character.
1510 if (isDecompNoAlgorithmic(norm16)) {
1511 // Maps to a single isCompYesAndZeroCC character
1512 // which also implies hasCompBoundaryBefore.
1513 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1514 hasCompBoundaryBefore(src, limit)) {
1515 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1516 break;
1517 }
1518 if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) {
1519 break;
1520 }
1521 prevBoundary = src;
1522 continue;
1523 }
1524 } else if (norm16 < minNoNoCompBoundaryBefore) {
1525 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1526 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1527 hasCompBoundaryBefore(src, limit)) {
1528 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1529 break;
1530 }
1531 const UChar *mapping = reinterpret_cast<const UChar *>(getMapping(norm16));
1532 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1533 if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) {
1534 break;
1535 }
1536 prevBoundary = src;
1537 continue;
1538 }
1539 } else if (norm16 >= minNoNoEmpty) {
1540 // The current character maps to nothing.
1541 // Simply omit it from the output if there is a boundary before _or_ after it.
1542 // The character itself implies no boundaries.
1543 if (hasCompBoundaryBefore(src, limit) ||
1544 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1545 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1546 break;
1547 }
1548 prevBoundary = src;
1549 continue;
1550 }
1551 }
1552 // Other "noNo" type, or need to examine more text around this character:
1553 // Fall through to the slow path.
1554 } else if (isJamoVT(norm16) && prevBoundary != prevSrc) {
1555 UChar prev=*(prevSrc-1);
1556 if(c<Hangul::JAMO_T_BASE) {
1557 // The current character is a Jamo Vowel,
1558 // compose with previous Jamo L and following Jamo T.
1559 UChar l = (UChar)(prev-Hangul::JAMO_L_BASE);
1560 if(l<Hangul::JAMO_L_COUNT) {
1561 if (!doCompose) {
1562 return FALSE0;
1563 }
1564 int32_t t;
1565 if (src != limit &&
1566 0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) &&
1567 t < Hangul::JAMO_T_COUNT) {
1568 // The next character is a Jamo T.
1569 ++src;
1570 } else if (hasCompBoundaryBefore(src, limit)) {
1571 // No Jamo T follows, not even via decomposition.
1572 t = 0;
1573 } else {
1574 t = -1;
1575 }
1576 if (t >= 0) {
1577 UChar32 syllable = Hangul::HANGUL_BASE +
1578 (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) *
1579 Hangul::JAMO_T_COUNT + t;
1580 --prevSrc; // Replace the Jamo L as well.
1581 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1582 break;
1583 }
1584 if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
1585 break;
1586 }
1587 prevBoundary = src;
1588 continue;
1589 }
1590 // If we see L+V+x where x!=T then we drop to the slow path,
1591 // decompose and recompose.
1592 // This is to deal with NFKC finding normal L and V but a
1593 // compatibility variant of a T.
1594 // We need to either fully compose that combination here
1595 // (which would complicate the code and may not work with strange custom data)
1596 // or use the slow path.
1597 }
1598 } else if (Hangul::isHangulLV(prev)) {
1599 // The current character is a Jamo Trailing consonant,
1600 // compose with previous Hangul LV that does not contain a Jamo T.
1601 if (!doCompose) {
1602 return FALSE0;
1603 }
1604 UChar32 syllable = prev + c - Hangul::JAMO_T_BASE;
1605 --prevSrc; // Replace the Hangul LV as well.
1606 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1607 break;
1608 }
1609 if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) {
1610 break;
1611 }
1612 prevBoundary = src;
1613 continue;
1614 }
1615 // No matching context, or may need to decompose surrounding text first:
1616 // Fall through to the slow path.
1617 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
1618 // One or more combining marks that do not combine-back:
1619 // Check for canonical order, copy unchanged if ok and
1620 // if followed by a character with a boundary-before.
1621 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
1622 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
1623 // Fails FCD test, need to decompose and contiguously recompose.
1624 if (!doCompose) {
1625 return FALSE0;
1626 }
1627 } else {
1628 // If !onlyContiguous (not FCC), then we ignore the tccc of
1629 // the previous character which passed the quick check "yes && ccc==0" test.
1630 const UChar *nextSrc;
1631 uint16_t n16;
1632 for (;;) {
1633 if (src == limit) {
1634 if (doCompose) {
1635 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1636 }
1637 return TRUE1;
1638 }
1639 uint8_t prevCC = cc;
1640 nextSrc = src;
1641 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16)do { (c) = *(nextSrc)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (nextSrc
) != (limit) && (((__c2 = *(nextSrc))&0xfffffc00)
==0xdc00)) { ++(nextSrc); (c) = (((UChar32)((c))<<10UL)
+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); __index
= ((c) >= (normTrie)->highStart ? (normTrie)->dataLength
- UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_71
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (n16) = ((normTrie)
->data.ptr16[__index]); } while (false)
;
1642 if (n16 >= MIN_YES_YES_WITH_CC) {
1643 cc = getCCFromNormalYesOrMaybe(n16);
1644 if (prevCC > cc) {
1645 if (!doCompose) {
1646 return FALSE0;
1647 }
1648 break;
1649 }
1650 } else {
1651 break;
1652 }
1653 src = nextSrc;
1654 }
1655 // src is after the last in-order combining mark.
1656 // If there is a boundary here, then we continue with no change.
1657 if (norm16HasCompBoundaryBefore(n16)) {
1658 if (isCompYesAndZeroCC(n16)) {
1659 src = nextSrc;
1660 }
1661 continue;
1662 }
1663 // Use the slow path. There is no boundary in [prevSrc, src[.
1664 }
1665 }
1666
1667 // Slow path: Find the nearest boundaries around the current character,
1668 // decompose and recompose.
1669 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
1670 const UChar *p = prevSrc;
1671 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (prevBoundary) && (((__c2 = *((p) - 1))&0xfffffc00
)==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_71
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
1672 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
1673 prevSrc = p;
1674 }
1675 }
1676 if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1677 break;
1678 }
1679 int32_t recomposeStartIndex=buffer.length();
1680 // We know there is not a boundary here.
1681 decomposeShort(prevSrc, src, FALSE0 /* !stopAtCompBoundary */, onlyContiguous,
1682 buffer, errorCode);
1683 // Decompose until the next boundary.
1684 src = decomposeShort(src, limit, TRUE1 /* stopAtCompBoundary */, onlyContiguous,
1685 buffer, errorCode);
1686 if (U_FAILURE(errorCode)) {
1687 break;
1688 }
1689 if ((src - prevSrc) > INT32_MAX(2147483647)) { // guard before buffer.equals()
1690 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
1691 return TRUE1;
1692 }
1693 recompose(buffer, recomposeStartIndex, onlyContiguous);
1694 if(!doCompose) {
1695 if(!buffer.equals(prevSrc, src)) {
1696 return FALSE0;
1697 }
1698 buffer.remove();
1699 }
1700 prevBoundary=src;
1701 }
1702 return TRUE1;
1703}
1704
1705// Very similar to compose(): Make the same changes in both places if relevant.
1706// pQCResult==NULL: spanQuickCheckYes
1707// pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
1708const UChar *
1709Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
1710 UBool onlyContiguous,
1711 UNormalizationCheckResult *pQCResult) const {
1712 const UChar *prevBoundary=src;
1713 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1714 if(limit==NULL__null) {
1715 UErrorCode errorCode=U_ZERO_ERROR;
1716 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL__null, errorCode);
1717 limit=u_strchru_strchr_71(src, 0);
1718 if (prevBoundary != src) {
1719 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1720 prevBoundary = src;
1721 } else {
1722 prevBoundary = --src;
1723 }
1724 }
1725 }
1726
1727 for(;;) {
1728 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1729 // or with (compYes && ccc==0) properties.
1730 const UChar *prevSrc;
1731 UChar32 c = 0;
1732 uint16_t norm16 = 0;
1733 for (;;) {
1734 if(src==limit) {
1735 return src;
1736 }
1737 if( (c=*src)<minNoMaybeCP ||
1738 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((int32_t)(normTrie)->index[(c)
>> UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK
))])
)
1739 ) {
1740 ++src;
1741 } else {
1742 prevSrc = src++;
1743 if(!U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
1744 break;
1745 } else {
1746 UChar c2;
1747 if(src!=limit && U16_IS_TRAIL(c2=*src)(((c2=*src)&0xfffffc00)==0xdc00)) {
1748 ++src;
1749 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
1750 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c)((normTrie)->data.ptr16[((c) >= (normTrie)->highStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c))])
;
1751 if(!isCompYesAndZeroCC(norm16)) {
1752 break;
1753 }
1754 }
1755 }
1756 }
1757 }
1758 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1759 // The current character is either a "noNo" (has a mapping)
1760 // or a "maybeYes" (combines backward)
1761 // or a "yesYes" with ccc!=0.
1762 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1763
1764 uint16_t prevNorm16 = INERT;
1765 if (prevBoundary != prevSrc) {
1766 if (norm16HasCompBoundaryBefore(norm16)) {
1767 prevBoundary = prevSrc;
1768 } else {
1769 const UChar *p = prevSrc;
1770 uint16_t n16;
1771 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (prevBoundary) && (((__c2 = *((p) - 1))&0xfffffc00
)==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_71
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (n16) = ((normTrie)
->data.ptr16[__index]); } while (false)
;
1772 if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) {
1773 prevBoundary = prevSrc;
1774 } else {
1775 prevBoundary = p;
1776 prevNorm16 = n16;
1777 }
1778 }
1779 }
1780
1781 if(isMaybeOrNonZeroCC(norm16)) {
1782 uint8_t cc=getCCFromYesOrMaybe(norm16);
1783 if (onlyContiguous /* FCC */ && cc != 0 &&
1784 getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) {
1785 // The [prevBoundary..prevSrc[ character
1786 // passed the quick check "yes && ccc==0" test
1787 // but is out of canonical order with the current combining mark.
1788 } else {
1789 // If !onlyContiguous (not FCC), then we ignore the tccc of
1790 // the previous character which passed the quick check "yes && ccc==0" test.
1791 const UChar *nextSrc;
1792 for (;;) {
1793 if (norm16 < MIN_YES_YES_WITH_CC) {
1794 if (pQCResult != nullptr) {
1795 *pQCResult = UNORM_MAYBE;
1796 } else {
1797 return prevBoundary;
1798 }
1799 }
1800 if (src == limit) {
1801 return src;
1802 }
1803 uint8_t prevCC = cc;
1804 nextSrc = src;
1805 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16)do { (c) = *(nextSrc)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (nextSrc
) != (limit) && (((__c2 = *(nextSrc))&0xfffffc00)
==0xdc00)) { ++(nextSrc); (c) = (((UChar32)((c))<<10UL)
+(UChar32)(__c2)-((0xd800<<10UL)+0xdc00-0x10000)); __index
= ((c) >= (normTrie)->highStart ? (normTrie)->dataLength
- UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_71
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
1806 if (isMaybeOrNonZeroCC(norm16)) {
1807 cc = getCCFromYesOrMaybe(norm16);
1808 if (!(prevCC <= cc || cc == 0)) {
1809 break;
1810 }
1811 } else {
1812 break;
1813 }
1814 src = nextSrc;
1815 }
1816 // src is after the last in-order combining mark.
1817 if (isCompYesAndZeroCC(norm16)) {
1818 prevBoundary = src;
1819 src = nextSrc;
1820 continue;
1821 }
1822 }
1823 }
1824 if(pQCResult!=NULL__null) {
1825 *pQCResult=UNORM_NO;
1826 }
1827 return prevBoundary;
1828 }
1829}
1830
1831void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
1832 UBool doCompose,
1833 UBool onlyContiguous,
1834 UnicodeString &safeMiddle,
1835 ReorderingBuffer &buffer,
1836 UErrorCode &errorCode) const {
1837 if(!buffer.isEmpty()) {
1838 const UChar *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous);
1839 if(src!=firstStarterInSrc) {
1840 const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
1841 buffer.getLimit(), onlyContiguous);
1842 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
1843 UnicodeString middle(lastStarterInDest, destSuffixLength);
1844 buffer.removeSuffix(destSuffixLength);
1845 safeMiddle=middle;
1846 middle.append(src, (int32_t)(firstStarterInSrc-src));
1847 const UChar *middleStart=middle.getBuffer();
1848 compose(middleStart, middleStart+middle.length(), onlyContiguous,
1849 TRUE1, buffer, errorCode);
1850 if(U_FAILURE(errorCode)) {
1851 return;
1852 }
1853 src=firstStarterInSrc;
1854 }
1855 }
1856 if(doCompose) {
1857 compose(src, limit, onlyContiguous, TRUE1, buffer, errorCode);
1858 } else {
1859 if(limit==NULL__null) { // appendZeroCC() needs limit!=NULL
1860 limit=u_strchru_strchr_71(src, 0);
1861 }
1862 buffer.appendZeroCC(src, limit, errorCode);
1863 }
1864}
1865
1866UBool
1867Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous,
1868 const uint8_t *src, const uint8_t *limit,
1869 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
1870 U_ASSERT(limit != nullptr)(void)0;
1871 UnicodeString s16;
1872 uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP);
1873 const uint8_t *prevBoundary = src;
1874
1875 for (;;) {
1876 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1877 // or with (compYes && ccc==0) properties.
1878 const uint8_t *prevSrc;
1879 uint16_t norm16 = 0;
1880 for (;;) {
1881 if (src == limit) {
1882 if (prevBoundary != limit && sink != nullptr) {
1883 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
1884 *sink, options, edits, errorCode);
1885 }
1886 return TRUE1;
1887 }
1888 if (*src < minNoMaybeLead) {
1889 ++src;
1890 } else {
1891 prevSrc = src;
1892 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_71((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
1893 if (!isCompYesAndZeroCC(norm16)) {
1894 break;
1895 }
1896 }
1897 }
1898 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1899 // The current character is either a "noNo" (has a mapping)
1900 // or a "maybeYes" (combines backward)
1901 // or a "yesYes" with ccc!=0.
1902 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1903
1904 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1905 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1906 if (sink == nullptr) {
1907 return FALSE0;
1908 }
1909 // Fast path for mapping a character that is immediately surrounded by boundaries.
1910 // In this case, we need not decompose around the current character.
1911 if (isDecompNoAlgorithmic(norm16)) {
1912 // Maps to a single isCompYesAndZeroCC character
1913 // which also implies hasCompBoundaryBefore.
1914 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1915 hasCompBoundaryBefore(src, limit)) {
1916 if (prevBoundary != prevSrc &&
1917 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1918 *sink, options, edits, errorCode)) {
1919 break;
1920 }
1921 appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits);
1922 prevBoundary = src;
1923 continue;
1924 }
1925 } else if (norm16 < minNoNoCompBoundaryBefore) {
1926 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1927 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1928 hasCompBoundaryBefore(src, limit)) {
1929 if (prevBoundary != prevSrc &&
1930 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1931 *sink, options, edits, errorCode)) {
1932 break;
1933 }
1934 const uint16_t *mapping = getMapping(norm16);
1935 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1936 if (!ByteSinkUtil::appendChange(prevSrc, src, (const UChar *)mapping, length,
1937 *sink, edits, errorCode)) {
1938 break;
1939 }
1940 prevBoundary = src;
1941 continue;
1942 }
1943 } else if (norm16 >= minNoNoEmpty) {
1944 // The current character maps to nothing.
1945 // Simply omit it from the output if there is a boundary before _or_ after it.
1946 // The character itself implies no boundaries.
1947 if (hasCompBoundaryBefore(src, limit) ||
1948 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1949 if (prevBoundary != prevSrc &&
1950 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1951 *sink, options, edits, errorCode)) {
1952 break;
1953 }
1954 if (edits != nullptr) {
1955 edits->addReplace((int32_t)(src - prevSrc), 0);
1956 }
1957 prevBoundary = src;
1958 continue;
1959 }
1960 }
1961 // Other "noNo" type, or need to examine more text around this character:
1962 // Fall through to the slow path.
1963 } else if (isJamoVT(norm16)) {
1964 // Jamo L: E1 84 80..92
1965 // Jamo V: E1 85 A1..B5
1966 // Jamo T: E1 86 A8..E1 87 82
1967 U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1)(void)0;
1968 UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc);
1969 if (prevSrc[1] == 0x85) {
1970 // The current character is a Jamo Vowel,
1971 // compose with previous Jamo L and following Jamo T.
1972 UChar32 l = prev - Hangul::JAMO_L_BASE;
1973 if ((uint32_t)l < Hangul::JAMO_L_COUNT) {
1974 if (sink == nullptr) {
1975 return FALSE0;
1976 }
1977 int32_t t = getJamoTMinusBase(src, limit);
1978 if (t >= 0) {
1979 // The next character is a Jamo T.
1980 src += 3;
1981 } else if (hasCompBoundaryBefore(src, limit)) {
1982 // No Jamo T follows, not even via decomposition.
1983 t = 0;
1984 }
1985 if (t >= 0) {
1986 UChar32 syllable = Hangul::HANGUL_BASE +
1987 (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) *
1988 Hangul::JAMO_T_COUNT + t;
1989 prevSrc -= 3; // Replace the Jamo L as well.
1990 if (prevBoundary != prevSrc &&
1991 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1992 *sink, options, edits, errorCode)) {
1993 break;
1994 }
1995 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
1996 prevBoundary = src;
1997 continue;
1998 }
1999 // If we see L+V+x where x!=T then we drop to the slow path,
2000 // decompose and recompose.
2001 // This is to deal with NFKC finding normal L and V but a
2002 // compatibility variant of a T.
2003 // We need to either fully compose that combination here
2004 // (which would complicate the code and may not work with strange custom data)
2005 // or use the slow path.
2006 }
2007 } else if (Hangul::isHangulLV(prev)) {
2008 // The current character is a Jamo Trailing consonant,
2009 // compose with previous Hangul LV that does not contain a Jamo T.
2010 if (sink == nullptr) {
2011 return FALSE0;
2012 }
2013 UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src);
2014 prevSrc -= 3; // Replace the Hangul LV as well.
2015 if (prevBoundary != prevSrc &&
2016 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2017 *sink, options, edits, errorCode)) {
2018 break;
2019 }
2020 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
2021 prevBoundary = src;
2022 continue;
2023 }
2024 // No matching context, or may need to decompose surrounding text first:
2025 // Fall through to the slow path.
2026 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
2027 // One or more combining marks that do not combine-back:
2028 // Check for canonical order, copy unchanged if ok and
2029 // if followed by a character with a boundary-before.
2030 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
2031 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
2032 // Fails FCD test, need to decompose and contiguously recompose.
2033 if (sink == nullptr) {
2034 return FALSE0;
2035 }
2036 } else {
2037 // If !onlyContiguous (not FCC), then we ignore the tccc of
2038 // the previous character which passed the quick check "yes && ccc==0" test.
2039 const uint8_t *nextSrc;
2040 uint16_t n16;
2041 for (;;) {
2042 if (src == limit) {
2043 if (sink != nullptr) {
2044 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
2045 *sink, options, edits, errorCode);
2046 }
2047 return TRUE1;
2048 }
2049 uint8_t prevCC = cc;
2050 nextSrc = src;
2051 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16)do { int32_t __lead = (uint8_t)*(nextSrc)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((nextSrc) != (limit
) && (__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(nextSrc)) >>
5)) && ++(nextSrc) != (limit) && (__t2 = *(nextSrc
) - 0x80) <= 0x3f && (__lead = ((int32_t)(normTrie
)->index[(__lead << 6) + (__t1 & 0x3f)]) + __t2,
1) : (__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(nextSrc)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(nextSrc
) != (limit)) && (__t2 = *(nextSrc) - 0x80) <= 0x3f
&& ++(nextSrc) != (limit) && (__t3 = *(nextSrc
) - 0x80) <= 0x3f && (__lead = __lead >= (normTrie
)->shifted12HighStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_71((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(nextSrc) - 0x80
) <= 0x3f && (__lead = (int32_t)(normTrie)->index
[__lead & 0x1f] + __t1, 1))) { ++(nextSrc); } else { __lead
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (n16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
2052 if (n16 >= MIN_YES_YES_WITH_CC) {
2053 cc = getCCFromNormalYesOrMaybe(n16);
2054 if (prevCC > cc) {
2055 if (sink == nullptr) {
2056 return FALSE0;
2057 }
2058 break;
2059 }
2060 } else {
2061 break;
2062 }
2063 src = nextSrc;
2064 }
2065 // src is after the last in-order combining mark.
2066 // If there is a boundary here, then we continue with no change.
2067 if (norm16HasCompBoundaryBefore(n16)) {
2068 if (isCompYesAndZeroCC(n16)) {
2069 src = nextSrc;
2070 }
2071 continue;
2072 }
2073 // Use the slow path. There is no boundary in [prevSrc, src[.
2074 }
2075 }
2076
2077 // Slow path: Find the nearest boundaries around the current character,
2078 // decompose and recompose.
2079 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
2080 const uint8_t *p = prevSrc;
2081 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16)do { int32_t __index = (uint8_t)*--(p); if (!(((__index)&
0x80)==0)) { __index = ucptrie_internalU8PrevIndex_71((normTrie
), __index, (const uint8_t *)(prevBoundary), (const uint8_t *
)(p)); (p) -= __index & 7; __index >>= 3; } (norm16
) = ((normTrie)->data.ptr16[__index]); } while (false)
;
2082 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2083 prevSrc = p;
2084 }
2085 }
2086 ReorderingBuffer buffer(*this, s16, errorCode);
2087 if (U_FAILURE(errorCode)) {
2088 break;
2089 }
2090 // We know there is not a boundary here.
2091 decomposeShort(prevSrc, src, STOP_AT_LIMIT, onlyContiguous,
2092 buffer, errorCode);
2093 // Decompose until the next boundary.
2094 src = decomposeShort(src, limit, STOP_AT_COMP_BOUNDARY, onlyContiguous,
2095 buffer, errorCode);
2096 if (U_FAILURE(errorCode)) {
2097 break;
2098 }
2099 if ((src - prevSrc) > INT32_MAX(2147483647)) { // guard before buffer.equals()
2100 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
2101 return TRUE1;
2102 }
2103 recompose(buffer, 0, onlyContiguous);
2104 if (!buffer.equals(prevSrc, src)) {
2105 if (sink == nullptr) {
2106 return FALSE0;
2107 }
2108 if (prevBoundary != prevSrc &&
2109 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2110 *sink, options, edits, errorCode)) {
2111 break;
2112 }
2113 if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(),
2114 *sink, edits, errorCode)) {
2115 break;
2116 }
2117 prevBoundary = src;
2118 }
2119 }
2120 return TRUE1;
2121}
2122
2123UBool Normalizer2Impl::hasCompBoundaryBefore(const UChar *src, const UChar *limit) const {
2124 if (src == limit || *src < minCompNoMaybeCP) {
2125 return TRUE1;
2126 }
2127 UChar32 c;
2128 uint16_t norm16;
2129 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16)do { (c) = *(src)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (src
) != (limit) && (((__c2 = *(src))&0xfffffc00)==0xdc00
)) { ++(src); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
2130 return norm16HasCompBoundaryBefore(norm16);
2131}
2132
2133UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const {
2134 if (src == limit) {
2135 return TRUE1;
2136 }
2137 uint16_t norm16;
2138 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16)do { int32_t __lead = (uint8_t)*(src)++; if (!(((__lead)&
0x80)==0)) { uint8_t __t1, __t2, __t3; if ((src) != (limit) &&
(__lead >= 0xe0 ? __lead < 0xf0 ? "\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[__lead &= 0xf] & (1 << ((__t1 = *(src)) >>
5)) && ++(src) != (limit) && (__t2 = *(src) -
0x80) <= 0x3f && (__lead = ((int32_t)(normTrie)->
index[(__lead << 6) + (__t1 & 0x3f)]) + __t2, 1) : (
__lead -= 0xf0) <= 4 && "\x00\x00\x00\x00\x00\x00\x00\x00\x1E\x0F\x0F\x0F\x00\x00\x00\x00"
[(__t1 = *(src)) >> 4] & (1 << __lead) &&
(__lead = (__lead << 6) | (__t1 & 0x3f), ++(src) !=
(limit)) && (__t2 = *(src) - 0x80) <= 0x3f &&
++(src) != (limit) && (__t3 = *(src) - 0x80) <= 0x3f
&& (__lead = __lead >= (normTrie)->shifted12HighStart
? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallU8Index_71((normTrie), __lead, __t2, __t3
), 1) : __lead >= 0xc2 && (__t1 = *(src) - 0x80) <=
0x3f && (__lead = (int32_t)(normTrie)->index[__lead
& 0x1f] + __t1, 1))) { ++(src); } else { __lead = (normTrie
)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (
norm16) = ((normTrie)->data.ptr16[__lead]); } while (false
)
;
2139 return norm16HasCompBoundaryBefore(norm16);
2140}
2141
2142UBool Normalizer2Impl::hasCompBoundaryAfter(const UChar *start, const UChar *p,
2143 UBool onlyContiguous) const {
2144 if (start == p) {
2145 return TRUE1;
2146 }
2147 UChar32 c;
2148 uint16_t norm16;
2149 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (start) && (((__c2 = *((p) - 1))&0xfffffc00)
==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_71
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2150 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2151}
2152
2153UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
2154 UBool onlyContiguous) const {
2155 if (start == p) {
2156 return TRUE1;
2157 }
2158 uint16_t norm16;
2159 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16)do { int32_t __index = (uint8_t)*--(p); if (!(((__index)&
0x80)==0)) { __index = ucptrie_internalU8PrevIndex_71((normTrie
), __index, (const uint8_t *)(start), (const uint8_t *)(p)); (
p) -= __index & 7; __index >>= 3; } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2160 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2161}
2162
2163const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p,
2164 UBool onlyContiguous) const {
2165 while (p != start) {
2166 const UChar *codePointLimit = p;
2167 UChar32 c;
2168 uint16_t norm16;
2169 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (start) && (((__c2 = *((p) - 1))&0xfffffc00)
==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_71
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2170 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2171 return codePointLimit;
2172 }
2173 if (hasCompBoundaryBefore(c, norm16)) {
2174 return p;
2175 }
2176 }
2177 return p;
2178}
2179
2180const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit,
2181 UBool onlyContiguous) const {
2182 while (p != limit) {
2183 const UChar *codePointStart = p;
2184 UChar32 c;
2185 uint16_t norm16;
2186 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
2187 if (hasCompBoundaryBefore(c, norm16)) {
2188 return codePointStart;
2189 }
2190 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2191 return p;
2192 }
2193 }
2194 return p;
2195}
2196
2197uint8_t Normalizer2Impl::getPreviousTrailCC(const UChar *start, const UChar *p) const {
2198 if (start == p) {
2199 return 0;
2200 }
2201 int32_t i = (int32_t)(p - start);
2202 UChar32 c;
2203 U16_PREV(start, 0, i, c)do { (c)=(start)[--(i)]; if((((c)&0xfffffc00)==0xdc00)) {
uint16_t __c2; if((i)>(0) && (((__c2=(start)[(i)-
1])&0xfffffc00)==0xd800)) { --(i); (c)=(((UChar32)(__c2)<<
10UL)+(UChar32)((c))-((0xd800<<10UL)+0xdc00-0x10000)); }
} } while (false)
;
2204 return (uint8_t)getFCD16(c);
2205}
2206
2207uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const {
2208 if (start == p) {
2209 return 0;
2210 }
2211 int32_t i = (int32_t)(p - start);
2212 UChar32 c;
2213 U8_PREV(start, 0, i, c)do { (c)=(uint8_t)(start)[--(i)]; if(!(((c)&0x80)==0)) { (
c)=utf8_prevCharSafeBody_71((const uint8_t *)start, 0, &(
i), c, -1); } } while (false)
;
2214 return (uint8_t)getFCD16(c);
2215}
2216
2217// Note: normalizer2impl.cpp r30982 (2011-nov-27)
2218// still had getFCDTrie() which built and cached an FCD trie.
2219// That provided faster access to FCD data than getFCD16FromNormData()
2220// but required synchronization and consumed some 10kB of heap memory
2221// in any process that uses FCD (e.g., via collation).
2222// minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance,
2223// at least for ASCII & CJK.
2224
2225// Ticket 20907 - The optimizer in MSVC/Visual Studio versions below 16.4 has trouble with this
2226// function on Windows ARM64. As a work-around, we disable optimizations for this function.
2227// This work-around could/should be removed once the following versions of Visual Studio are no
2228// longer supported: All versions of VS2017, and versions of VS2019 below 16.4.
2229#if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2230#pragma optimize( "", off )
2231#endif
2232// Gets the FCD value from the regular normalization data.
2233uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
2234 uint16_t norm16=getNorm16(c);
2235 if (norm16 >= limitNoNo) {
2236 if(norm16>=MIN_NORMAL_MAYBE_YES) {
2237 // combining mark
2238 norm16=getCCFromNormalYesOrMaybe(norm16);
2239 return norm16|(norm16<<8);
2240 } else if(norm16>=minMaybeYes) {
2241 return 0;
2242 } else { // isDecompNoAlgorithmic(norm16)
2243 uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK;
2244 if (deltaTrailCC <= DELTA_TCCC_1) {
2245 return deltaTrailCC >> OFFSET_SHIFT;
2246 }
2247 // Maps to an isCompYesAndZeroCC.
2248 c=mapAlgorithmic(c, norm16);
2249 norm16=getRawNorm16(c);
2250 }
2251 }
2252 if(norm16<=minYesNo || isHangulLVT(norm16)) {
2253 // no decomposition or Hangul syllable, all zeros
2254 return 0;
2255 }
2256 // c decomposes, get everything from the variable-length extra data
2257 const uint16_t *mapping=getMapping(norm16);
2258 uint16_t firstUnit=*mapping;
2259 norm16=firstUnit>>8; // tccc
2260 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
2261 norm16|=*(mapping-1)&0xff00; // lccc
2262 }
2263 return norm16;
2264}
2265#if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2266#pragma optimize( "", on )
2267#endif
2268
2269// Dual functionality:
2270// buffer!=NULL: normalize
2271// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
2272const UChar *
2273Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
2274 ReorderingBuffer *buffer,
2275 UErrorCode &errorCode) const {
2276 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
2277 // Similar to the prevBoundary in the compose() implementation.
2278 const UChar *prevBoundary=src;
2279 int32_t prevFCD16=0;
2280 if(limit==NULL__null) {
2281 src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode);
2282 if(U_FAILURE(errorCode)) {
2283 return src;
2284 }
2285 if(prevBoundary<src) {
2286 prevBoundary=src;
2287 // We know that the previous character's lccc==0.
2288 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
2289 prevFCD16=getFCD16(*(src-1));
2290 if(prevFCD16>1) {
2291 --prevBoundary;
2292 }
2293 }
2294 limit=u_strchru_strchr_71(src, 0);
2295 }
2296
2297 // Note: In this function we use buffer->appendZeroCC() because we track
2298 // the lead and trail combining classes here, rather than leaving it to
2299 // the ReorderingBuffer.
2300 // The exception is the call to decomposeShort() which uses the buffer
2301 // in the normal way.
2302
2303 const UChar *prevSrc;
2304 UChar32 c=0;
2305 uint16_t fcd16=0;
2306
2307 for(;;) {
2308 // count code units with lccc==0
2309 for(prevSrc=src; src!=limit;) {
2310 if((c=*src)<minLcccCP) {
2311 prevFCD16=~c;
2312 ++src;
2313 } else if(!singleLeadMightHaveNonZeroFCD16(c)) {
2314 prevFCD16=0;
2315 ++src;
2316 } else {
2317 if(U16_IS_LEAD(c)(((c)&0xfffffc00)==0xd800)) {
2318 UChar c2;
2319 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])(((c2=src[1])&0xfffffc00)==0xdc00)) {
2320 c=U16_GET_SUPPLEMENTARY(c, c2)(((UChar32)(c)<<10UL)+(UChar32)(c2)-((0xd800<<10UL
)+0xdc00-0x10000))
;
2321 }
2322 }
2323 if((fcd16=getFCD16FromNormData(c))<=0xff) {
2324 prevFCD16=fcd16;
2325 src+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
2326 } else {
2327 break;
2328 }
2329 }
2330 }
2331 // copy these code units all at once
2332 if(src!=prevSrc) {
2333 if(buffer!=NULL__null && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
2334 break;
2335 }
2336 if(src==limit) {
2337 break;
2338 }
2339 prevBoundary=src;
2340 // We know that the previous character's lccc==0.
2341 if(prevFCD16<0) {
2342 // Fetching the fcd16 value was deferred for this below-minLcccCP code point.
2343 UChar32 prev=~prevFCD16;
2344 if(prev<minDecompNoCP) {
2345 prevFCD16=0;
2346 } else {
2347 prevFCD16=getFCD16FromNormData(prev);
2348 if(prevFCD16>1) {
2349 --prevBoundary;
2350 }
2351 }
2352 } else {
2353 const UChar *p=src-1;
2354 if(U16_IS_TRAIL(*p)(((*p)&0xfffffc00)==0xdc00) && prevSrc<p && U16_IS_LEAD(*(p-1))(((*(p-1))&0xfffffc00)==0xd800)) {
2355 --p;
2356 // Need to fetch the previous character's FCD value because
2357 // prevFCD16 was just for the trail surrogate code point.
2358 prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])(((UChar32)(p[0])<<10UL)+(UChar32)(p[1])-((0xd800<<
10UL)+0xdc00-0x10000))
);
2359 // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
2360 }
2361 if(prevFCD16>1) {
2362 prevBoundary=p;
2363 }
2364 }
2365 // The start of the current character (c).
2366 prevSrc=src;
2367 } else if(src==limit) {
2368 break;
2369 }
2370
2371 src+=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
2372 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
2373 // Check for proper order, and decompose locally if necessary.
2374 if((prevFCD16&0xff)<=(fcd16>>8)) {
2375 // proper order: prev tccc <= current lccc
2376 if((fcd16&0xff)<=1) {
2377 prevBoundary=src;
2378 }
2379 if(buffer!=NULL__null && !buffer->appendZeroCC(c, errorCode)) {
2380 break;
2381 }
2382 prevFCD16=fcd16;
2383 continue;
2384 } else if(buffer==NULL__null) {
2385 return prevBoundary; // quick check "no"
2386 } else {
2387 /*
2388 * Back out the part of the source that we copied or appended
2389 * already but is now going to be decomposed.
2390 * prevSrc is set to after what was copied/appended.
2391 */
2392 buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
2393 /*
2394 * Find the part of the source that needs to be decomposed,
2395 * up to the next safe boundary.
2396 */
2397 src=findNextFCDBoundary(src, limit);
2398 /*
2399 * The source text does not fulfill the conditions for FCD.
2400 * Decompose and reorder a limited piece of the text.
2401 */
2402 decomposeShort(prevBoundary, src, FALSE0, FALSE0, *buffer, errorCode);
2403 if (U_FAILURE(errorCode)) {
2404 break;
2405 }
2406 prevBoundary=src;
2407 prevFCD16=0;
2408 }
2409 }
2410 return src;
2411}
2412
2413void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
2414 UBool doMakeFCD,
2415 UnicodeString &safeMiddle,
2416 ReorderingBuffer &buffer,
2417 UErrorCode &errorCode) const {
2418 if(!buffer.isEmpty()) {
2419 const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
2420 if(src!=firstBoundaryInSrc) {
2421 const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
2422 buffer.getLimit());
2423 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
2424 UnicodeString middle(lastBoundaryInDest, destSuffixLength);
2425 buffer.removeSuffix(destSuffixLength);
2426 safeMiddle=middle;
2427 middle.append(src, (int32_t)(firstBoundaryInSrc-src));
2428 const UChar *middleStart=middle.getBuffer();
2429 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
2430 if(U_FAILURE(errorCode)) {
2431 return;
2432 }
2433 src=firstBoundaryInSrc;
2434 }
2435 }
2436 if(doMakeFCD) {
2437 makeFCD(src, limit, &buffer, errorCode);
2438 } else {
2439 if(limit==NULL__null) { // appendZeroCC() needs limit!=NULL
2440 limit=u_strchru_strchr_71(src, 0);
2441 }
2442 buffer.appendZeroCC(src, limit, errorCode);
2443 }
2444}
2445
2446const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
2447 while(start<p) {
2448 const UChar *codePointLimit = p;
2449 UChar32 c;
2450 uint16_t norm16;
2451 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16)do { (c) = *--(p); int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)!=0) && (p
) != (start) && (((__c2 = *((p) - 1))&0xfffffc00)
==0xd800)) { --(p); (c) = (((UChar32)(__c2)<<10UL)+(UChar32
)((c))-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c)
>= (normTrie)->highStart ? (normTrie)->dataLength -
UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET : ucptrie_internalSmallIndex_71
(normTrie, c)); } else { __index = (normTrie)->dataLength -
UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET; } } (norm16) = ((normTrie
)->data.ptr16[__index]); } while (false)
;
2452 if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) {
2453 return codePointLimit;
2454 }
2455 if (norm16HasDecompBoundaryBefore(norm16)) {
2456 return p;
2457 }
2458 }
2459 return p;
2460}
2461
2462const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
2463 while(p<limit) {
2464 const UChar *codePointStart=p;
2465 UChar32 c;
2466 uint16_t norm16;
2467 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16)do { (c) = *(p)++; int32_t __index; if (!(((c)&0xfffff800
)==0xd800)) { __index = ((int32_t)(normTrie)->index[(c) >>
UCPTRIE_FAST_SHIFT] + ((c) & UCPTRIE_FAST_DATA_MASK)); }
else { uint16_t __c2; if ((((c)&0x400)==0) && (p
) != (limit) && (((__c2 = *(p))&0xfffffc00)==0xdc00
)) { ++(p); (c) = (((UChar32)((c))<<10UL)+(UChar32)(__c2
)-((0xd800<<10UL)+0xdc00-0x10000)); __index = ((c) >=
(normTrie)->highStart ? (normTrie)->dataLength - UCPTRIE_HIGH_VALUE_NEG_DATA_OFFSET
: ucptrie_internalSmallIndex_71(normTrie, c)); } else { __index
= (normTrie)->dataLength - UCPTRIE_ERROR_VALUE_NEG_DATA_OFFSET
; } } (norm16) = ((normTrie)->data.ptr16[__index]); } while
(false)
;
2468 if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) {
2469 return codePointStart;
2470 }
2471 if (norm16HasDecompBoundaryAfter(norm16)) {
2472 return p;
2473 }
2474 }
2475 return p;
2476}
2477
2478// CanonicalIterator data -------------------------------------------------- ***
2479
2480CanonIterData::CanonIterData(UErrorCode &errorCode) :
2481 mutableTrie(umutablecptrie_openumutablecptrie_open_71(0, 0, &errorCode)), trie(nullptr),
2482 canonStartSets(uprv_deleteUObjectuprv_deleteUObject_71, NULL__null, errorCode) {}
2483
2484CanonIterData::~CanonIterData() {
2485 umutablecptrie_closeumutablecptrie_close_71(mutableTrie);
2486 ucptrie_closeucptrie_close_71(trie);
2487}
2488
2489void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
2490 uint32_t canonValue = umutablecptrie_getumutablecptrie_get_71(mutableTrie, decompLead);
2491 if((canonValue&(CANON_HAS_SET0x200000|CANON_VALUE_MASK0x1fffff))==0 && origin!=0) {
2492 // origin is the first character whose decomposition starts with
2493 // the character for which we are setting the value.
2494 umutablecptrie_setumutablecptrie_set_71(mutableTrie, decompLead, canonValue|origin, &errorCode);
2495 } else {
2496 // origin is not the first character, or it is U+0000.
2497 UnicodeSet *set;
2498 if((canonValue&CANON_HAS_SET0x200000)==0) {
2499 LocalPointer<UnicodeSet> lpSet(new UnicodeSet, errorCode);
2500 set=lpSet.getAlias();
2501 if(U_FAILURE(errorCode)) {
2502 return;
2503 }
2504 UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK0x1fffff);
2505 canonValue=(canonValue&~CANON_VALUE_MASK0x1fffff)|CANON_HAS_SET0x200000|(uint32_t)canonStartSets.size();
2506 umutablecptrie_setumutablecptrie_set_71(mutableTrie, decompLead, canonValue, &errorCode);
2507 canonStartSets.adoptElement(lpSet.orphan(), errorCode);
2508 if (U_FAILURE(errorCode)) {
2509 return;
2510 }
2511 if(firstOrigin!=0) {
2512 set->add(firstOrigin);
2513 }
2514 } else {
2515 set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK0x1fffff)];
2516 }
2517 set->add(origin);
2518 }
2519}
2520
2521// C++ class for friend access to private Normalizer2Impl members.
2522class InitCanonIterData {
2523public:
2524 static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode);
2525};
2526
2527U_CDECL_BEGINextern "C" {
2528
2529// UInitOnce instantiation function for CanonIterData
2530static void U_CALLCONV
2531initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
2532 InitCanonIterData::doInit(impl, errorCode);
2533}
2534
2535U_CDECL_END}
2536
2537void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) {
2538 U_ASSERT(impl->fCanonIterData == NULL)(void)0;
2539 impl->fCanonIterData = new CanonIterData(errorCode);
2540 if (impl->fCanonIterData == NULL__null) {
2541 errorCode=U_MEMORY_ALLOCATION_ERROR;
2542 }
2543 if (U_SUCCESS(errorCode)) {
2544 UChar32 start = 0, end;
2545 uint32_t value;
2546 while ((end = ucptrie_getRangeucptrie_getRange_71(impl->normTrie, start,
2547 UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT,
2548 nullptr, nullptr, &value)) >= 0) {
2549 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
2550 if (value != Normalizer2Impl::INERT) {
2551 impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode);
2552 }
2553 start = end + 1;
2554 }
2555#ifdef UCPTRIE_DEBUG
2556 umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData");
2557#endif
2558 impl->fCanonIterData->trie = umutablecptrie_buildImmutableumutablecptrie_buildImmutable_71(
2559 impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode);
2560 umutablecptrie_closeumutablecptrie_close_71(impl->fCanonIterData->mutableTrie);
2561 impl->fCanonIterData->mutableTrie = nullptr;
2562 }
2563 if (U_FAILURE(errorCode)) {
2564 delete impl->fCanonIterData;
2565 impl->fCanonIterData = NULL__null;
2566 }
2567}
2568
2569void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
2570 CanonIterData &newData,
2571 UErrorCode &errorCode) const {
2572 if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) {
2573 // Inert, or 2-way mapping (including Hangul syllable).
2574 // We do not write a canonStartSet for any yesNo character.
2575 // Composites from 2-way mappings are added at runtime from the
2576 // starter's compositions list, and the other characters in
2577 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
2578 // "maybe" characters.
2579 return;
2580 }
2581 for(UChar32 c=start; c<=end; ++c) {
2582 uint32_t oldValue = umutablecptrie_getumutablecptrie_get_71(newData.mutableTrie, c);
2583 uint32_t newValue=oldValue;
2584 if(isMaybeOrNonZeroCC(norm16)) {
2585 // not a segment starter if it occurs in a decomposition or has cc!=0
2586 newValue|=CANON_NOT_SEGMENT_STARTER0x80000000;
2587 if(norm16<MIN_NORMAL_MAYBE_YES) {
2588 newValue|=CANON_HAS_COMPOSITIONS0x40000000;
2589 }
2590 } else if(norm16<minYesNo) {
2591 newValue|=CANON_HAS_COMPOSITIONS0x40000000;
2592 } else {
2593 // c has a one-way decomposition
2594 UChar32 c2=c;
2595 // Do not modify the whole-range norm16 value.
2596 uint16_t norm16_2=norm16;
2597 if (isDecompNoAlgorithmic(norm16_2)) {
2598 // Maps to an isCompYesAndZeroCC.
2599 c2 = mapAlgorithmic(c2, norm16_2);
2600 norm16_2 = getRawNorm16(c2);
2601 // No compatibility mappings for the CanonicalIterator.
2602 U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2)))(void)0;
2603 }
2604 if (norm16_2 > minYesNo) {
2605 // c decomposes, get everything from the variable-length extra data
2606 const uint16_t *mapping=getMapping(norm16_2);
2607 uint16_t firstUnit=*mapping;
2608 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
2609 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
2610 if(c==c2 && (*(mapping-1)&0xff)!=0) {
2611 newValue|=CANON_NOT_SEGMENT_STARTER0x80000000; // original c has cc!=0
2612 }
2613 }
2614 // Skip empty mappings (no characters in the decomposition).
2615 if(length!=0) {
2616 ++mapping; // skip over the firstUnit
2617 // add c to first code point's start set
2618 int32_t i=0;
2619 U16_NEXT_UNSAFE(mapping, i, c2)do { (c2)=(mapping)[(i)++]; if((((c2)&0xfffffc00)==0xd800
)) { (c2)=(((UChar32)((c2))<<10UL)+(UChar32)((mapping)[
(i)++])-((0xd800<<10UL)+0xdc00-0x10000)); } } while (false
)
;
2620 newData.addToStartSet(c, c2, errorCode);
2621 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
2622 // one-way mapping. A 2-way mapping is possible here after
2623 // intermediate algorithmic mapping.
2624 if(norm16_2>=minNoNo) {
2625 while(i<length) {
2626 U16_NEXT_UNSAFE(mapping, i, c2)do { (c2)=(mapping)[(i)++]; if((((c2)&0xfffffc00)==0xd800
)) { (c2)=(((UChar32)((c2))<<10UL)+(UChar32)((mapping)[
(i)++])-((0xd800<<10UL)+0xdc00-0x10000)); } } while (false
)
;
2627 uint32_t c2Value = umutablecptrie_getumutablecptrie_get_71(newData.mutableTrie, c2);
2628 if((c2Value&CANON_NOT_SEGMENT_STARTER0x80000000)==0) {
2629 umutablecptrie_setumutablecptrie_set_71(newData.mutableTrie, c2,
2630 c2Value|CANON_NOT_SEGMENT_STARTER0x80000000, &errorCode);
2631 }
2632 }
2633 }
2634 }
2635 } else {
2636 // c decomposed to c2 algorithmically; c has cc==0
2637 newData.addToStartSet(c, c2, errorCode);
2638 }
2639 }
2640 if(newValue!=oldValue) {
2641 umutablecptrie_setumutablecptrie_set_71(newData.mutableTrie, c, newValue, &errorCode);
2642 }
2643 }
2644}
2645
2646UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
2647 // Logically const: Synchronized instantiation.
2648 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
2649 umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
2650 return U_SUCCESS(errorCode);
2651}
2652
2653int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
2654 return (int32_t)ucptrie_getucptrie_get_71(fCanonIterData->trie, c);
2655}
2656
2657const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
2658 return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
2659}
2660
2661UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
2662 return getCanonValue(c)>=0;
2663}
2664
2665UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
2666 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER0x80000000;
2667 if(canonValue==0) {
2668 return FALSE0;
2669 }
2670 set.clear();
2671 int32_t value=canonValue&CANON_VALUE_MASK0x1fffff;
2672 if((canonValue&CANON_HAS_SET0x200000)!=0) {
2673 set.addAll(getCanonStartSet(value));
2674 } else if(value!=0) {
2675 set.add(value);
2676 }
2677 if((canonValue&CANON_HAS_COMPOSITIONS0x40000000)!=0) {
2678 uint16_t norm16=getRawNorm16(c);
2679 if(norm16==JAMO_L) {
2680 UChar32 syllable=
2681 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
2682 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
2683 } else {
2684 addComposites(getCompositionsList(norm16), set);
2685 }
2686 }
2687 return TRUE1;
2688}
2689
2690U_NAMESPACE_END}
2691
2692// Normalizer2 data swapping ----------------------------------------------- ***
2693
2694U_NAMESPACE_USEusing namespace icu_71;
2695
2696U_CAPIextern "C" int32_t U_EXPORT2
2697unorm2_swapunorm2_swap_71(const UDataSwapper *ds,
2698 const void *inData, int32_t length, void *outData,
2699 UErrorCode *pErrorCode) {
2700 const UDataInfo *pInfo;
2701 int32_t headerSize;
2702
2703 const uint8_t *inBytes;
2704 uint8_t *outBytes;
2705
2706 const int32_t *inIndexes;
2707 int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1];
2708
2709 int32_t i, offset, nextOffset, size;
2710
2711 /* udata_swapDataHeader checks the arguments */
2712 headerSize=udata_swapDataHeaderudata_swapDataHeader_71(ds, inData, length, outData, pErrorCode);
2713 if(pErrorCode==NULL__null || U_FAILURE(*pErrorCode)) {
2714 return 0;
2715 }
2716
2717 /* check data format and format version */
2718 pInfo=(const UDataInfo *)((const char *)inData+4);
2719 uint8_t formatVersion0=pInfo->formatVersion[0];
2720 if(!(
2721 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
2722 pInfo->dataFormat[1]==0x72 &&
2723 pInfo->dataFormat[2]==0x6d &&
2724 pInfo->dataFormat[3]==0x32 &&
2725 (1<=formatVersion0 && formatVersion0<=4)
2726 )) {
2727 udata_printErrorudata_printError_71(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
2728 pInfo->dataFormat[0], pInfo->dataFormat[1],
2729 pInfo->dataFormat[2], pInfo->dataFormat[3],
2730 pInfo->formatVersion[0]);
2731 *pErrorCode=U_UNSUPPORTED_ERROR;
2732 return 0;
2733 }
2734
2735 inBytes=(const uint8_t *)inData+headerSize;
2736 outBytes=(uint8_t *)outData+headerSize;
2737
2738 inIndexes=(const int32_t *)inBytes;
2739 int32_t minIndexesLength;
2740 if(formatVersion0==1) {
2741 minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1;
2742 } else if(formatVersion0==2) {
2743 minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1;
2744 } else {
2745 minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1;
2746 }
2747
2748 if(length>=0) {
2749 length-=headerSize;
2750 if(length<minIndexesLength*4) {
2751 udata_printErrorudata_printError_71(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
2752 length);
2753 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2754 return 0;
2755 }
2756 }
2757
2758 /* read the first few indexes */
2759 for(i=0; i<UPRV_LENGTHOF(indexes)(int32_t)(sizeof(indexes)/sizeof((indexes)[0])); ++i) {
2760 indexes[i]=udata_readInt32udata_readInt32_71(ds, inIndexes[i]);
2761 }
2762
2763 /* get the total length of the data */
2764 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
2765
2766 if(length>=0) {
2767 if(length<size) {
2768 udata_printErrorudata_printError_71(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
2769 length);
2770 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2771 return 0;
2772 }
2773
2774 /* copy the data for inaccessible bytes */
2775 if(inBytes!=outBytes) {
2776 uprv_memcpy(outBytes, inBytes, size)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(outBytes,
inBytes, size); } while (false)
;
2777 }
2778
2779 offset=0;
2780
2781 /* swap the int32_t indexes[] */
2782 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
2783 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
2784 offset=nextOffset;
2785
2786 /* swap the trie */
2787 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
2788 utrie_swapAnyVersionutrie_swapAnyVersion_71(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2789 offset=nextOffset;
2790
2791 /* swap the uint16_t extraData[] */
2792 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
2793 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2794 offset=nextOffset;
Value stored to 'offset' is never read
2795
2796 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
2797 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
2798 offset=nextOffset;
2799
2800 U_ASSERT(offset==size)(void)0;
2801 }
2802
2803 return headerSize+size;
2804}
2805
2806#endif // !UCONFIG_NO_NORMALIZATION