Bug Summary

File:out/../deps/icu-small/source/common/ucnvmbcs.cpp
Warning:line 3609, column 21
Value stored to 'targetCapacity' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ucnvmbcs.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -mframe-pointer=all -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/home/maurizio/node-v18.6.0/out -resource-dir /usr/local/lib/clang/16.0.0 -D V8_DEPRECATION_WARNINGS -D V8_IMMINENT_DEPRECATION_WARNINGS -D _GLIBCXX_USE_CXX11_ABI=1 -D NODE_OPENSSL_CONF_NAME=nodejs_conf -D NODE_OPENSSL_HAS_QUIC -D __STDC_FORMAT_MACROS -D OPENSSL_NO_PINSHARED -D OPENSSL_THREADS -D U_COMMON_IMPLEMENTATION=1 -D U_ATTRIBUTE_DEPRECATED= -D _CRT_SECURE_NO_DEPRECATE= -D U_STATIC_IMPLEMENTATION=1 -D UCONFIG_NO_SERVICE=1 -D U_ENABLE_DYLOAD=0 -D U_HAVE_STD_STRING=1 -D UCONFIG_NO_BREAK_ITERATION=0 -I ../deps/icu-small/source/common -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/x86_64-redhat-linux -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../include/c++/8/backward -internal-isystem /usr/local/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-redhat-linux/8/../../../../x86_64-redhat-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-unused-parameter -Wno-deprecated-declarations -Wno-strict-aliasing -std=gnu++17 -fdeprecated-macro -fdebug-compilation-dir=/home/maurizio/node-v18.6.0/out -ferror-limit 19 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-08-22-142216-507842-1 -x c++ ../deps/icu-small/source/common/ucnvmbcs.cpp
1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4******************************************************************************
5*
6* Copyright (C) 2000-2016, International Business Machines
7* Corporation and others. All Rights Reserved.
8*
9******************************************************************************
10* file name: ucnvmbcs.cpp
11* encoding: UTF-8
12* tab size: 8 (not used)
13* indentation:4
14*
15* created on: 2000jul03
16* created by: Markus W. Scherer
17*
18* The current code in this file replaces the previous implementation
19* of conversion code from multi-byte codepages to Unicode and back.
20* This implementation supports the following:
21* - legacy variable-length codepages with up to 4 bytes per character
22* - all Unicode code points (up to 0x10ffff)
23* - efficient distinction of unassigned vs. illegal byte sequences
24* - it is possible in fromUnicode() to directly deal with simple
25* stateful encodings (used for EBCDIC_STATEFUL)
26* - it is possible to convert Unicode code points
27* to a single zero byte (but not as a fallback except for SBCS)
28*
29* Remaining limitations in fromUnicode:
30* - byte sequences must not have leading zero bytes
31* - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
32* - limitation to up to 4 bytes per character
33*
34* ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
35* limitations and adds m:n character mappings and other features.
36* See ucnv_ext.h for details.
37*
38* Change history:
39*
40* 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
41* MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
42* macros to ucnvmbcs.h file
43*/
44
45#include "unicode/utypes.h"
46
47#if !UCONFIG_NO_CONVERSION0 && !UCONFIG_NO_LEGACY_CONVERSION0
48
49#include "unicode/ucnv.h"
50#include "unicode/ucnv_cb.h"
51#include "unicode/udata.h"
52#include "unicode/uset.h"
53#include "unicode/utf8.h"
54#include "unicode/utf16.h"
55#include "ucnv_bld.h"
56#include "ucnvmbcs.h"
57#include "ucnv_ext.h"
58#include "ucnv_cnv.h"
59#include "cmemory.h"
60#include "cstring.h"
61#include "umutex.h"
62#include "ustr_imp.h"
63
64/* control optimizations according to the platform */
65#define MBCS_UNROLL_SINGLE_TO_BMP1 1
66#define MBCS_UNROLL_SINGLE_FROM_BMP0 0
67
68/*
69 * _MBCSHeader versions 5.3 & 4.3
70 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
71 *
72 * This version is optional. Version 5 is used for incompatible data format changes.
73 * makeconv will continue to generate version 4 files if possible.
74 *
75 * Changes from version 4:
76 *
77 * The main difference is an additional _MBCSHeader field with
78 * - the length (number of uint32_t) of the _MBCSHeader
79 * - flags for further incompatible data format changes
80 * - flags for further, backward compatible data format changes
81 *
82 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
83 * the file and needs to be reconstituted at load time.
84 * This requires a utf8Friendly format with an additional mbcsIndex table for fast
85 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
86 * (For details about these structures see below, and see ucnvmbcs.h.)
87 *
88 * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
89 * of the Unicode code points. (This requires that the .ucm file has the |0 etc.
90 * precision markers for all mappings.)
91 *
92 * All fallbacks have been moved to the extension table, leaving only roundtrips in the
93 * omitted data that can be reconstituted from the toUnicode data.
94 *
95 * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
96 * With only roundtrip mappings in the base fromUnicode data, this part is fully
97 * redundant with the mbcsIndex and will be reconstituted from that (also using the
98 * stage 1 table which contains the information about how stage 2 was compacted).
99 *
100 * The rest of the stage 2 table, the part for code points above maxFastUChar,
101 * is stored in the file and will be appended to the reconstituted part.
102 *
103 * The entire fromUBytes array is omitted from the file and will be reconstitued.
104 * This is done by enumerating all toUnicode roundtrip mappings, performing
105 * each mapping (using the stage 1 and reconstituted stage 2 tables) and
106 * writing instead of reading the byte values.
107 *
108 * _MBCSHeader version 4.3
109 *
110 * Change from version 4.2:
111 * - Optional utf8Friendly data structures, with 64-entry stage 3 block
112 * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
113 * files which can be used instead of stages 1 & 2.
114 * Faster lookups for roundtrips from most commonly used characters,
115 * and lookups from UTF-8 byte sequences with a natural bit distribution.
116 * See ucnvmbcs.h for more details.
117 *
118 * Change from version 4.1:
119 * - Added an optional extension table structure at the end of the .cnv file.
120 * It is present if the upper bits of the header flags field contains a non-zero
121 * byte offset to it.
122 * Files that contain only a conversion table and no base table
123 * use the special outputType MBCS_OUTPUT_EXT_ONLY.
124 * These contain the base table name between the MBCS header and the extension
125 * data.
126 *
127 * Change from version 4.0:
128 * - Replace header.reserved with header.fromUBytesLength so that all
129 * fields in the data have length.
130 *
131 * Changes from version 3 (for performance improvements):
132 * - new bit distribution for state table entries
133 * - reordered action codes
134 * - new data structure for single-byte fromUnicode
135 * + stage 2 only contains indexes
136 * + stage 3 stores 16 bits per character with classification bits 15..8
137 * - no multiplier for stage 1 entries
138 * - stage 2 for non-single-byte codepages contains the index and the flags in
139 * one 32-bit value
140 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
141 *
142 * For more details about old versions of the MBCS data structure, see
143 * the corresponding versions of this file.
144 *
145 * Converting stateless codepage data ---------------------------------------***
146 * (or codepage data with simple states) to Unicode.
147 *
148 * Data structure and algorithm for converting from complex legacy codepages
149 * to Unicode. (Designed before 2000-may-22.)
150 *
151 * The basic idea is that the structure of legacy codepages can be described
152 * with state tables.
153 * When reading a byte stream, each input byte causes a state transition.
154 * Some transitions result in the output of a code point, some result in
155 * "unassigned" or "illegal" output.
156 * This is used here for character conversion.
157 *
158 * The data structure begins with a state table consisting of a row
159 * per state, with 256 entries (columns) per row for each possible input
160 * byte value.
161 * Each entry is 32 bits wide, with two formats distinguished by
162 * the sign bit (bit 31):
163 *
164 * One format for transitional entries (bit 31 not set) for non-final bytes, and
165 * one format for final entries (bit 31 set).
166 * Both formats contain the number of the next state in the same bit
167 * positions.
168 * State 0 is the initial state.
169 *
170 * Most of the time, the offset values of subsequent states are added
171 * up to a scalar value. This value will eventually be the index of
172 * the Unicode code point in a table that follows the state table.
173 * The effect is that the code points for final state table rows
174 * are contiguous. The code points of final state rows follow each other
175 * in the order of the references to those final states by previous
176 * states, etc.
177 *
178 * For some terminal states, the offset is itself the output Unicode
179 * code point (16 bits for a BMP code point or 20 bits for a supplementary
180 * code point (stored as code point minus 0x10000 so that 20 bits are enough).
181 * For others, the code point in the Unicode table is stored with either
182 * one or two code units: one for BMP code points, two for a pair of
183 * surrogates.
184 * All code points for a final state entry take up the same number of code
185 * units, regardless of whether they all actually _use_ the same number
186 * of code units. This is necessary for simple array access.
187 *
188 * An additional feature comes in with what in ICU is called "fallback"
189 * mappings:
190 *
191 * In addition to round-trippable, precise, 1:1 mappings, there are often
192 * mappings defined between similar, though not the same, characters.
193 * Typically, such mappings occur only in fromUnicode mapping tables because
194 * Unicode has a superset repertoire of most other codepages. However, it
195 * is possible to provide such mappings in the toUnicode tables, too.
196 * In this case, the fallback mappings are partly integrated into the
197 * general state tables because the structure of the encoding includes their
198 * byte sequences.
199 * For final entries in an initial state, fallback mappings are stored in
200 * the entry itself like with roundtrip mappings.
201 * For other final entries, they are stored in the code units table if
202 * the entry is for a pair of code units.
203 * For single-unit results in the code units table, there is no space to
204 * alternatively hold a fallback mapping; in this case, the code unit
205 * is stored as U+fffe (unassigned), and the fallback mapping needs to
206 * be looked up by the scalar offset value in a separate table.
207 *
208 * "Unassigned" state entries really mean "structurally unassigned",
209 * i.e., such a byte sequence will never have a mapping result.
210 *
211 * The interpretation of the bits in each entry is as follows:
212 *
213 * Bit 31 not set, not a terminal entry ("transitional"):
214 * 30..24 next state
215 * 23..0 offset delta, to be added up
216 *
217 * Bit 31 set, terminal ("final") entry:
218 * 30..24 next state (regardless of action code)
219 * 23..20 action code:
220 * action codes 0 and 1 result in precise-mapping Unicode code points
221 * 0 valid byte sequence
222 * 19..16 not used, 0
223 * 15..0 16-bit Unicode BMP code point
224 * never U+fffe or U+ffff
225 * 1 valid byte sequence
226 * 19..0 20-bit Unicode supplementary code point
227 * never U+fffe or U+ffff
228 *
229 * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
230 * 2 valid byte sequence (fallback)
231 * 19..16 not used, 0
232 * 15..0 16-bit Unicode BMP code point as fallback result
233 * 3 valid byte sequence (fallback)
234 * 19..0 20-bit Unicode supplementary code point as fallback result
235 *
236 * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
237 * depending on the code units they result in
238 * 4 valid byte sequence
239 * 19..9 not used, 0
240 * 8..0 final offset delta
241 * pointing to one 16-bit code unit which may be
242 * fffe unassigned -- look for a fallback for this offset
243 * ffff illegal
244 * 5 valid byte sequence
245 * 19..9 not used, 0
246 * 8..0 final offset delta
247 * pointing to two 16-bit code units
248 * (typically UTF-16 surrogates)
249 * the result depends on the first code unit as follows:
250 * 0000..d7ff roundtrip BMP code point (1st alone)
251 * d800..dbff roundtrip surrogate pair (1st, 2nd)
252 * dc00..dfff fallback surrogate pair (1st-400, 2nd)
253 * e000 roundtrip BMP code point (2nd alone)
254 * e001 fallback BMP code point (2nd alone)
255 * fffe unassigned
256 * ffff illegal
257 * (the final offset deltas are at most 255 * 2,
258 * times 2 because of storing code unit pairs)
259 *
260 * 6 unassigned byte sequence
261 * 19..16 not used, 0
262 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2)
263 * this does not contain a final offset delta because the main
264 * purpose of this action code is to save scalar offset values;
265 * therefore, fallback values cannot be assigned to byte
266 * sequences that result in this action code
267 * 7 illegal byte sequence
268 * 19..16 not used, 0
269 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2)
270 * 8 state change only
271 * 19..0 not used, 0
272 * useful for state changes in simple stateful encodings,
273 * at Shift-In/Shift-Out codes
274 *
275 *
276 * 9..15 reserved for future use
277 * current implementations will only perform a state change
278 * and ignore bits 19..0
279 *
280 * An encoding with contiguous ranges of unassigned byte sequences, like
281 * Shift-JIS and especially EUC-TW, can be stored efficiently by having
282 * at least two states for the trail bytes:
283 * One trail byte state that results in code points, and one that only
284 * has "unassigned" and "illegal" terminal states.
285 *
286 * Note: partly by accident, this data structure supports simple stateful
287 * encodings without any additional logic.
288 * Currently, only simple Shift-In/Shift-Out schemes are handled with
289 * appropriate state tables (especially EBCDIC_STATEFUL!).
290 *
291 * MBCS version 2 added:
292 * unassigned and illegal action codes have U+fffe and U+ffff
293 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
294 *
295 * Converting from Unicode to codepage bytes --------------------------------***
296 *
297 * The conversion data structure for fromUnicode is designed for the known
298 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
299 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
300 * a roundtrip mapping.
301 *
302 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
303 * like in the character properties table.
304 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
305 * with the resulting bytes is at offsetFromUBytes.
306 *
307 * Beginning with version 4, single-byte codepages have a significantly different
308 * trie compared to other codepages.
309 * In all cases, the entry in stage 1 is directly the index of the block of
310 * 64 entries in stage 2.
311 *
312 * Single-byte lookup:
313 *
314 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
315 * Stage 3 contains one 16-bit word per result:
316 * Bits 15..8 indicate the kind of result:
317 * f roundtrip result
318 * c fallback result from private-use code point
319 * 8 fallback result from other code points
320 * 0 unassigned
321 * Bits 7..0 contain the codepage byte. A zero byte is always possible.
322 *
323 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
324 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
325 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
326 * ASCII code points can be looked up with a linear array access into stage 3.
327 * See maxFastUChar and other details in ucnvmbcs.h.
328 *
329 * Multi-byte lookup:
330 *
331 * Stage 2 contains a 32-bit word for each 16-block in stage 3:
332 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
333 * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
334 * If this test is false, then a non-zero result will be interpreted as
335 * a fallback mapping.
336 * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char)
337 *
338 * Stage 3 contains 2, 3, or 4 bytes per result.
339 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
340 * while 3 bytes are stored as bytes in big-endian order.
341 * Leading zero bytes are ignored, and the number of bytes is counted.
342 * A zero byte mapping result is possible as a roundtrip result.
343 * For some output types, the actual result is processed from this;
344 * see ucnv_MBCSFromUnicodeWithOffsets().
345 *
346 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
347 * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
348 *
349 * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
350 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
351 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
352 * ASCII code points can be looked up with a linear array access into stage 3.
353 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
354 *
355 * In version 3, stage 2 blocks may overlap by multiples of the multiplier
356 * for compaction.
357 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
358 * may overlap by any number of entries.
359 *
360 * MBCS version 2 added:
361 * the converter checks for known output types, which allows
362 * adding new ones without crashing an unaware converter
363 */
364
365/**
366 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
367 * consecutive sequences of bytes, starting from the one encoded in value,
368 * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
369 * Does not currently support m:n mappings or reverse fallbacks.
370 * This function will not be called for sequences of bytes with leading zeros.
371 *
372 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
373 * @param value contains 1..4 bytes of the first byte sequence, right-aligned
374 * @param codePoints resulting Unicode code points, or negative if a byte sequence does
375 * not map to anything
376 * @return TRUE to continue enumeration, FALSE to stop
377 */
378typedef UBool U_CALLCONV
379UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
380
381static void U_CALLCONV
382ucnv_MBCSLoad(UConverterSharedData *sharedData,
383 UConverterLoadArgs *pArgs,
384 const uint8_t *raw,
385 UErrorCode *pErrorCode);
386
387static void U_CALLCONV
388ucnv_MBCSUnload(UConverterSharedData *sharedData);
389
390static void U_CALLCONV
391ucnv_MBCSOpen(UConverter *cnv,
392 UConverterLoadArgs *pArgs,
393 UErrorCode *pErrorCode);
394
395static UChar32 U_CALLCONV
396ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
397 UErrorCode *pErrorCode);
398
399static void U_CALLCONV
400ucnv_MBCSGetStarters(const UConverter* cnv,
401 UBool starters[256],
402 UErrorCode *pErrorCode);
403
404U_CDECL_BEGINextern "C" {
405static const char* U_CALLCONV
406ucnv_MBCSGetName(const UConverter *cnv);
407U_CDECL_END}
408
409static void U_CALLCONV
410ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
411 int32_t offsetIndex,
412 UErrorCode *pErrorCode);
413
414static UChar32 U_CALLCONV
415ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
416 UErrorCode *pErrorCode);
417
418static void U_CALLCONV
419ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
420 UConverterToUnicodeArgs *pToUArgs,
421 UErrorCode *pErrorCode);
422
423static void U_CALLCONV
424ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
425 const USetAdder *sa,
426 UConverterUnicodeSet which,
427 UErrorCode *pErrorCode);
428
429static void U_CALLCONV
430ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
431 UConverterToUnicodeArgs *pToUArgs,
432 UErrorCode *pErrorCode);
433
434static const UConverterImpl _SBCSUTF8Impl={
435 UCNV_MBCS,
436
437 ucnv_MBCSLoad,
438 ucnv_MBCSUnload,
439
440 ucnv_MBCSOpen,
441 NULL__null,
442 NULL__null,
443
444 ucnv_MBCSToUnicodeWithOffsetsucnv_MBCSToUnicodeWithOffsets_71,
445 ucnv_MBCSToUnicodeWithOffsetsucnv_MBCSToUnicodeWithOffsets_71,
446 ucnv_MBCSFromUnicodeWithOffsetsucnv_MBCSFromUnicodeWithOffsets_71,
447 ucnv_MBCSFromUnicodeWithOffsetsucnv_MBCSFromUnicodeWithOffsets_71,
448 ucnv_MBCSGetNextUChar,
449
450 ucnv_MBCSGetStarters,
451 ucnv_MBCSGetName,
452 ucnv_MBCSWriteSub,
453 NULL__null,
454 ucnv_MBCSGetUnicodeSet,
455
456 NULL__null,
457 ucnv_SBCSFromUTF8
458};
459
460static const UConverterImpl _DBCSUTF8Impl={
461 UCNV_MBCS,
462
463 ucnv_MBCSLoad,
464 ucnv_MBCSUnload,
465
466 ucnv_MBCSOpen,
467 NULL__null,
468 NULL__null,
469
470 ucnv_MBCSToUnicodeWithOffsetsucnv_MBCSToUnicodeWithOffsets_71,
471 ucnv_MBCSToUnicodeWithOffsetsucnv_MBCSToUnicodeWithOffsets_71,
472 ucnv_MBCSFromUnicodeWithOffsetsucnv_MBCSFromUnicodeWithOffsets_71,
473 ucnv_MBCSFromUnicodeWithOffsetsucnv_MBCSFromUnicodeWithOffsets_71,
474 ucnv_MBCSGetNextUChar,
475
476 ucnv_MBCSGetStarters,
477 ucnv_MBCSGetName,
478 ucnv_MBCSWriteSub,
479 NULL__null,
480 ucnv_MBCSGetUnicodeSet,
481
482 NULL__null,
483 ucnv_DBCSFromUTF8
484};
485
486static const UConverterImpl _MBCSImpl={
487 UCNV_MBCS,
488
489 ucnv_MBCSLoad,
490 ucnv_MBCSUnload,
491
492 ucnv_MBCSOpen,
493 NULL__null,
494 NULL__null,
495
496 ucnv_MBCSToUnicodeWithOffsetsucnv_MBCSToUnicodeWithOffsets_71,
497 ucnv_MBCSToUnicodeWithOffsetsucnv_MBCSToUnicodeWithOffsets_71,
498 ucnv_MBCSFromUnicodeWithOffsetsucnv_MBCSFromUnicodeWithOffsets_71,
499 ucnv_MBCSFromUnicodeWithOffsetsucnv_MBCSFromUnicodeWithOffsets_71,
500 ucnv_MBCSGetNextUChar,
501
502 ucnv_MBCSGetStarters,
503 ucnv_MBCSGetName,
504 ucnv_MBCSWriteSub,
505 NULL__null,
506 ucnv_MBCSGetUnicodeSet,
507 NULL__null,
508 NULL__null
509};
510
511/* Static data is in tools/makeconv/ucnvstat.c for data-based
512 * converters. Be sure to update it as well.
513 */
514
515const UConverterSharedData _MBCSData_MBCSData_71={
516 sizeof(UConverterSharedData), 1,
517 NULL__null, NULL__null, FALSE0, TRUE1, &_MBCSImpl,
518 0, UCNV_MBCS_TABLE_INITIALIZER{ 0, 0, 0, 0, __null, __null, __null, __null, __null, __null,
{ 0 }, __null, __null, 0, 0, 0, false, 0, 0, __null, __null,
__null, __null }
519};
520
521
522/* GB 18030 data ------------------------------------------------------------ */
523
524/* helper macros for linear values for GB 18030 four-byte sequences */
525#define LINEAR_18030(a, b, c, d)((((a)*10+(b))*126L+(c))*10L+(d)) ((((a)*10+(b))*126L+(c))*10L+(d))
526
527#define LINEAR_18030_BASE((((0x81)*10+(0x30))*126L+(0x81))*10L+(0x30)) LINEAR_18030(0x81, 0x30, 0x81, 0x30)((((0x81)*10+(0x30))*126L+(0x81))*10L+(0x30))
528
529#define LINEAR(x)((((x>>24)*10+((x>>16)&0xff))*126L+((x>>
8)&0xff))*10L+(x&0xff))
LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)((((x>>24)*10+((x>>16)&0xff))*126L+((x>>
8)&0xff))*10L+(x&0xff))
530
531/*
532 * Some ranges of GB 18030 where both the Unicode code points and the
533 * GB four-byte sequences are contiguous and are handled algorithmically by
534 * the special callback functions below.
535 * The values are start & end of Unicode & GB codes.
536 *
537 * Note that single surrogates are not mapped by GB 18030
538 * as of the re-released mapping tables from 2000-nov-30.
539 */
540static const uint32_t
541gb18030Ranges[14][4]={
542 {0x10000, 0x10FFFF, LINEAR(0x90308130)((((0x90308130>>24)*10+((0x90308130>>16)&0xff
))*126L+((0x90308130>>8)&0xff))*10L+(0x90308130&
0xff))
, LINEAR(0xE3329A35)((((0xE3329A35>>24)*10+((0xE3329A35>>16)&0xff
))*126L+((0xE3329A35>>8)&0xff))*10L+(0xE3329A35&
0xff))
},
543 {0x9FA6, 0xD7FF, LINEAR(0x82358F33)((((0x82358F33>>24)*10+((0x82358F33>>16)&0xff
))*126L+((0x82358F33>>8)&0xff))*10L+(0x82358F33&
0xff))
, LINEAR(0x8336C738)((((0x8336C738>>24)*10+((0x8336C738>>16)&0xff
))*126L+((0x8336C738>>8)&0xff))*10L+(0x8336C738&
0xff))
},
544 {0x0452, 0x1E3E, LINEAR(0x8130D330)((((0x8130D330>>24)*10+((0x8130D330>>16)&0xff
))*126L+((0x8130D330>>8)&0xff))*10L+(0x8130D330&
0xff))
, LINEAR(0x8135F436)((((0x8135F436>>24)*10+((0x8135F436>>16)&0xff
))*126L+((0x8135F436>>8)&0xff))*10L+(0x8135F436&
0xff))
},
545 {0x1E40, 0x200F, LINEAR(0x8135F438)((((0x8135F438>>24)*10+((0x8135F438>>16)&0xff
))*126L+((0x8135F438>>8)&0xff))*10L+(0x8135F438&
0xff))
, LINEAR(0x8136A531)((((0x8136A531>>24)*10+((0x8136A531>>16)&0xff
))*126L+((0x8136A531>>8)&0xff))*10L+(0x8136A531&
0xff))
},
546 {0xE865, 0xF92B, LINEAR(0x8336D030)((((0x8336D030>>24)*10+((0x8336D030>>16)&0xff
))*126L+((0x8336D030>>8)&0xff))*10L+(0x8336D030&
0xff))
, LINEAR(0x84308534)((((0x84308534>>24)*10+((0x84308534>>16)&0xff
))*126L+((0x84308534>>8)&0xff))*10L+(0x84308534&
0xff))
},
547 {0x2643, 0x2E80, LINEAR(0x8137A839)((((0x8137A839>>24)*10+((0x8137A839>>16)&0xff
))*126L+((0x8137A839>>8)&0xff))*10L+(0x8137A839&
0xff))
, LINEAR(0x8138FD38)((((0x8138FD38>>24)*10+((0x8138FD38>>16)&0xff
))*126L+((0x8138FD38>>8)&0xff))*10L+(0x8138FD38&
0xff))
},
548 {0xFA2A, 0xFE2F, LINEAR(0x84309C38)((((0x84309C38>>24)*10+((0x84309C38>>16)&0xff
))*126L+((0x84309C38>>8)&0xff))*10L+(0x84309C38&
0xff))
, LINEAR(0x84318537)((((0x84318537>>24)*10+((0x84318537>>16)&0xff
))*126L+((0x84318537>>8)&0xff))*10L+(0x84318537&
0xff))
},
549 {0x3CE1, 0x4055, LINEAR(0x8231D438)((((0x8231D438>>24)*10+((0x8231D438>>16)&0xff
))*126L+((0x8231D438>>8)&0xff))*10L+(0x8231D438&
0xff))
, LINEAR(0x8232AF32)((((0x8232AF32>>24)*10+((0x8232AF32>>16)&0xff
))*126L+((0x8232AF32>>8)&0xff))*10L+(0x8232AF32&
0xff))
},
550 {0x361B, 0x3917, LINEAR(0x8230A633)((((0x8230A633>>24)*10+((0x8230A633>>16)&0xff
))*126L+((0x8230A633>>8)&0xff))*10L+(0x8230A633&
0xff))
, LINEAR(0x8230F237)((((0x8230F237>>24)*10+((0x8230F237>>16)&0xff
))*126L+((0x8230F237>>8)&0xff))*10L+(0x8230F237&
0xff))
},
551 {0x49B8, 0x4C76, LINEAR(0x8234A131)((((0x8234A131>>24)*10+((0x8234A131>>16)&0xff
))*126L+((0x8234A131>>8)&0xff))*10L+(0x8234A131&
0xff))
, LINEAR(0x8234E733)((((0x8234E733>>24)*10+((0x8234E733>>16)&0xff
))*126L+((0x8234E733>>8)&0xff))*10L+(0x8234E733&
0xff))
},
552 {0x4160, 0x4336, LINEAR(0x8232C937)((((0x8232C937>>24)*10+((0x8232C937>>16)&0xff
))*126L+((0x8232C937>>8)&0xff))*10L+(0x8232C937&
0xff))
, LINEAR(0x8232F837)((((0x8232F837>>24)*10+((0x8232F837>>16)&0xff
))*126L+((0x8232F837>>8)&0xff))*10L+(0x8232F837&
0xff))
},
553 {0x478E, 0x4946, LINEAR(0x8233E838)((((0x8233E838>>24)*10+((0x8233E838>>16)&0xff
))*126L+((0x8233E838>>8)&0xff))*10L+(0x8233E838&
0xff))
, LINEAR(0x82349638)((((0x82349638>>24)*10+((0x82349638>>16)&0xff
))*126L+((0x82349638>>8)&0xff))*10L+(0x82349638&
0xff))
},
554 {0x44D7, 0x464B, LINEAR(0x8233A339)((((0x8233A339>>24)*10+((0x8233A339>>16)&0xff
))*126L+((0x8233A339>>8)&0xff))*10L+(0x8233A339&
0xff))
, LINEAR(0x8233C931)((((0x8233C931>>24)*10+((0x8233C931>>16)&0xff
))*126L+((0x8233C931>>8)&0xff))*10L+(0x8233C931&
0xff))
},
555 {0xFFE6, 0xFFFF, LINEAR(0x8431A234)((((0x8431A234>>24)*10+((0x8431A234>>16)&0xff
))*126L+((0x8431A234>>8)&0xff))*10L+(0x8431A234&
0xff))
, LINEAR(0x8431A439)((((0x8431A439>>24)*10+((0x8431A439>>16)&0xff
))*126L+((0x8431A439>>8)&0xff))*10L+(0x8431A439&
0xff))
}
556};
557
558/* bit flag for UConverter.options indicating GB 18030 special handling */
559#define _MBCS_OPTION_GB180300x8000 0x8000
560
561/* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
562#define _MBCS_OPTION_KEIS0x01000 0x01000
563#define _MBCS_OPTION_JEF0x02000 0x02000
564#define _MBCS_OPTION_JIPS0x04000 0x04000
565
566#define KEIS_SO_CHAR_10x0A 0x0A
567#define KEIS_SO_CHAR_20x42 0x42
568#define KEIS_SI_CHAR_10x0A 0x0A
569#define KEIS_SI_CHAR_20x41 0x41
570
571#define JEF_SO_CHAR0x28 0x28
572#define JEF_SI_CHAR0x29 0x29
573
574#define JIPS_SO_CHAR_10x1A 0x1A
575#define JIPS_SO_CHAR_20x70 0x70
576#define JIPS_SI_CHAR_10x1A 0x1A
577#define JIPS_SI_CHAR_20x71 0x71
578
579enum SISO_Option {
580 SI,
581 SO
582};
583typedef enum SISO_Option SISO_Option;
584
585static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
586 int32_t SISOLength = 0;
587
588 switch (option) {
589 case SI:
590 if ((cnvOption&_MBCS_OPTION_KEIS0x01000)!=0) {
591 value[0] = KEIS_SI_CHAR_10x0A;
592 value[1] = KEIS_SI_CHAR_20x41;
593 SISOLength = 2;
594 } else if ((cnvOption&_MBCS_OPTION_JEF0x02000)!=0) {
595 value[0] = JEF_SI_CHAR0x29;
596 SISOLength = 1;
597 } else if ((cnvOption&_MBCS_OPTION_JIPS0x04000)!=0) {
598 value[0] = JIPS_SI_CHAR_10x1A;
599 value[1] = JIPS_SI_CHAR_20x71;
600 SISOLength = 2;
601 } else {
602 value[0] = UCNV_SI0x0F;
603 SISOLength = 1;
604 }
605 break;
606 case SO:
607 if ((cnvOption&_MBCS_OPTION_KEIS0x01000)!=0) {
608 value[0] = KEIS_SO_CHAR_10x0A;
609 value[1] = KEIS_SO_CHAR_20x42;
610 SISOLength = 2;
611 } else if ((cnvOption&_MBCS_OPTION_JEF0x02000)!=0) {
612 value[0] = JEF_SO_CHAR0x28;
613 SISOLength = 1;
614 } else if ((cnvOption&_MBCS_OPTION_JIPS0x04000)!=0) {
615 value[0] = JIPS_SO_CHAR_10x1A;
616 value[1] = JIPS_SO_CHAR_20x70;
617 SISOLength = 2;
618 } else {
619 value[0] = UCNV_SO0x0E;
620 SISOLength = 1;
621 }
622 break;
623 default:
624 /* Should never happen. */
625 break;
626 }
627
628 return SISOLength;
629}
630
631/* Miscellaneous ------------------------------------------------------------ */
632
633/* similar to ucnv_MBCSGetNextUChar() but recursive */
634static UBool
635enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
636 int32_t state, uint32_t offset,
637 uint32_t value,
638 UConverterEnumToUCallback *callback, const void *context,
639 UErrorCode *pErrorCode) {
640 UChar32 codePoints[32];
641 const int32_t *row;
642 const uint16_t *unicodeCodeUnits;
643 UChar32 anyCodePoints;
644 int32_t b, limit;
645
646 row=mbcsTable->stateTable[state];
647 unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
648
649 value<<=8;
650 anyCodePoints=-1; /* becomes non-negative if there is a mapping */
651
652 b=(stateProps[state]&0x38)<<2;
653 if(b==0 && stateProps[state]>=0x40) {
654 /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
655 codePoints[0]=U_SENTINEL(-1);
656 b=1;
657 }
658 limit=((stateProps[state]&7)+1)<<5;
659 while(b<limit) {
660 int32_t entry=row[b];
661 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
662 int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24);
663 if(stateProps[nextState]>=0) {
664 /* recurse to a state with non-ignorable actions */
665 if(!enumToU(
666 mbcsTable, stateProps, nextState,
667 offset+MBCS_ENTRY_TRANSITION_OFFSET(entry)((entry)&0xffffff),
668 value|(uint32_t)b,
669 callback, context,
670 pErrorCode)) {
671 return FALSE0;
672 }
673 }
674 codePoints[b&0x1f]=U_SENTINEL(-1);
675 } else {
676 UChar32 c;
677 int32_t action;
678
679 /*
680 * An if-else-if chain provides more reliable performance for
681 * the most common cases compared to a switch.
682 */
683 action=MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf);
684 if(action==MBCS_STATE_VALID_DIRECT_16) {
685 /* output BMP code point */
686 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
687 } else if(action==MBCS_STATE_VALID_16) {
688 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
689 c=unicodeCodeUnits[finalOffset];
690 if(c<0xfffe) {
691 /* output BMP code point */
692 } else {
693 c=U_SENTINEL(-1);
694 }
695 } else if(action==MBCS_STATE_VALID_16_PAIR) {
696 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
697 c=unicodeCodeUnits[finalOffset++];
698 if(c<0xd800) {
699 /* output BMP code point below 0xd800 */
700 } else if(c<=0xdbff) {
701 /* output roundtrip or fallback supplementary code point */
702 c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
703 } else if(c==0xe000) {
704 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
705 c=unicodeCodeUnits[finalOffset];
706 } else {
707 c=U_SENTINEL(-1);
708 }
709 } else if(action==MBCS_STATE_VALID_DIRECT_20) {
710 /* output supplementary code point */
711 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff)+0x10000);
712 } else {
713 c=U_SENTINEL(-1);
714 }
715
716 codePoints[b&0x1f]=c;
717 anyCodePoints&=c;
718 }
719 if(((++b)&0x1f)==0) {
720 if(anyCodePoints>=0) {
721 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
722 return FALSE0;
723 }
724 anyCodePoints=-1;
725 }
726 }
727 }
728 return TRUE1;
729}
730
731/*
732 * Only called if stateProps[state]==-1.
733 * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
734 * MBCS_STATE_CHANGE_ONLY.
735 */
736static int8_t
737getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
738 const int32_t *row;
739 int32_t min, max, entry, nextState;
740
741 row=stateTable[state];
742 stateProps[state]=0;
743
744 /* find first non-ignorable state */
745 for(min=0;; ++min) {
746 entry=row[min];
747 nextState=MBCS_ENTRY_STATE(entry)((((uint32_t)entry)>>24)&0x7f);
748 if(stateProps[nextState]==-1) {
749 getStateProp(stateTable, stateProps, nextState);
750 }
751 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
752 if(stateProps[nextState]>=0) {
753 break;
754 }
755 } else if(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)<MBCS_STATE_UNASSIGNED) {
756 break;
757 }
758 if(min==0xff) {
759 stateProps[state]=-0x40; /* (int8_t)0xc0 */
760 return stateProps[state];
761 }
762 }
763 stateProps[state]|=(int8_t)((min>>5)<<3);
764
765 /* find last non-ignorable state */
766 for(max=0xff; min<max; --max) {
767 entry=row[max];
768 nextState=MBCS_ENTRY_STATE(entry)((((uint32_t)entry)>>24)&0x7f);
769 if(stateProps[nextState]==-1) {
770 getStateProp(stateTable, stateProps, nextState);
771 }
772 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
773 if(stateProps[nextState]>=0) {
774 break;
775 }
776 } else if(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)<MBCS_STATE_UNASSIGNED) {
777 break;
778 }
779 }
780 stateProps[state]|=(int8_t)(max>>5);
781
782 /* recurse further and collect direct-state information */
783 while(min<=max) {
784 entry=row[min];
785 nextState=MBCS_ENTRY_STATE(entry)((((uint32_t)entry)>>24)&0x7f);
786 if(stateProps[nextState]==-1) {
787 getStateProp(stateTable, stateProps, nextState);
788 }
789 if(MBCS_ENTRY_IS_FINAL(entry)((entry)<0)) {
790 stateProps[nextState]|=0x40;
791 if(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)<=MBCS_STATE_FALLBACK_DIRECT_20) {
792 stateProps[state]|=0x40;
793 }
794 }
795 ++min;
796 }
797 return stateProps[state];
798}
799
800/*
801 * Internal function enumerating the toUnicode data of an MBCS converter.
802 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
803 * table, but could also be used for a future ucnv_getUnicodeSet() option
804 * that includes reverse fallbacks (after updating this function's implementation).
805 * Currently only handles roundtrip mappings.
806 * Does not currently handle extensions.
807 */
808static void
809ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
810 UConverterEnumToUCallback *callback, const void *context,
811 UErrorCode *pErrorCode) {
812 /*
813 * Properties for each state, to speed up the enumeration.
814 * Ignorable actions are unassigned/illegal/state-change-only:
815 * They do not lead to mappings.
816 *
817 * Bits 7..6:
818 * 1 direct/initial state (stateful converters have multiple)
819 * 0 non-initial state with transitions or with non-ignorable result actions
820 * -1 final state with only ignorable actions
821 *
822 * Bits 5..3:
823 * The lowest byte value with non-ignorable actions is
824 * value<<5 (rounded down).
825 *
826 * Bits 2..0:
827 * The highest byte value with non-ignorable actions is
828 * (value<<5)&0x1f (rounded up).
829 */
830 int8_t stateProps[MBCS_MAX_STATE_COUNT];
831 int32_t state;
832
833 uprv_memset(stateProps, -1, sizeof(stateProps)):: memset(stateProps, -1, sizeof(stateProps));
834
835 /* recurse from state 0 and set all stateProps */
836 getStateProp(mbcsTable->stateTable, stateProps, 0);
837
838 for(state=0; state<mbcsTable->countStates; ++state) {
839 /*if(stateProps[state]==-1) {
840 printf("unused/unreachable <icu:state> %d\n", state);
841 }*/
842 if(stateProps[state]>=0x40) {
843 /* start from each direct state */
844 enumToU(
845 mbcsTable, stateProps, state, 0, 0,
846 callback, context,
847 pErrorCode);
848 }
849 }
850}
851
852U_CFUNCextern "C" void
853ucnv_MBCSGetFilteredUnicodeSetForUnicodeucnv_MBCSGetFilteredUnicodeSetForUnicode_71(const UConverterSharedData *sharedData,
854 const USetAdder *sa,
855 UConverterUnicodeSet which,
856 UConverterSetFilter filter,
857 UErrorCode *pErrorCode) {
858 const UConverterMBCSTable *mbcsTable;
859 const uint16_t *table;
860
861 uint32_t st3;
862 uint16_t st1, maxStage1, st2;
863
864 UChar32 c;
865
866 /* enumerate the from-Unicode trie table */
867 mbcsTable=&sharedData->mbcs;
868 table=mbcsTable->fromUnicodeTable;
869 if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY1) {
870 maxStage1=0x440;
871 } else {
872 maxStage1=0x40;
873 }
874
875 c=0; /* keep track of the current code point while enumerating */
876
877 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
878 const uint16_t *stage2, *stage3, *results;
879 uint16_t minValue;
880
881 results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
882
883 /*
884 * Set a threshold variable for selecting which mappings to use.
885 * See ucnv_MBCSSingleFromBMPWithOffsets() and
886 * MBCS_SINGLE_RESULT_FROM_U() for details.
887 */
888 if(which==UCNV_ROUNDTRIP_SET) {
889 /* use only roundtrips */
890 minValue=0xf00;
891 } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
892 /* use all roundtrip and fallback results */
893 minValue=0x800;
894 }
895
896 for(st1=0; st1<maxStage1; ++st1) {
897 st2=table[st1];
898 if(st2>maxStage1) {
899 stage2=table+st2;
900 for(st2=0; st2<64; ++st2) {
901 if((st3=stage2[st2])!=0) {
902 /* read the stage 3 block */
903 stage3=results+st3;
904
905 do {
906 if(*stage3++>=minValue) {
907 sa->add(sa->set, c);
908 }
909 } while((++c&0xf)!=0);
910 } else {
911 c+=16; /* empty stage 3 block */
912 }
913 }
914 } else {
915 c+=1024; /* empty stage 2 block */
916 }
917 }
918 } else {
919 const uint32_t *stage2;
920 const uint8_t *stage3, *bytes;
921 uint32_t st3Multiplier;
922 uint32_t value;
923 UBool useFallback;
924
925 bytes=mbcsTable->fromUnicodeBytes;
926
927 useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
928
929 switch(mbcsTable->outputType) {
930 case MBCS_OUTPUT_3:
931 case MBCS_OUTPUT_4_EUC:
932 st3Multiplier=3;
933 break;
934 case MBCS_OUTPUT_4:
935 st3Multiplier=4;
936 break;
937 default:
938 st3Multiplier=2;
939 break;
940 }
941
942 for(st1=0; st1<maxStage1; ++st1) {
943 st2=table[st1];
944 if(st2>(maxStage1>>1)) {
945 stage2=(const uint32_t *)table+st2;
946 for(st2=0; st2<64; ++st2) {
947 if((st3=stage2[st2])!=0) {
948 /* read the stage 3 block */
949 stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
950
951 /* get the roundtrip flags for the stage 3 block */
952 st3>>=16;
953
954 /*
955 * Add code points for which the roundtrip flag is set,
956 * or which map to non-zero bytes if we use fallbacks.
957 * See ucnv_MBCSFromUnicodeWithOffsets() for details.
958 */
959 switch(filter) {
960 case UCNV_SET_FILTER_NONE:
961 do {
962 if(st3&1) {
963 sa->add(sa->set, c);
964 stage3+=st3Multiplier;
965 } else if(useFallback) {
966 uint8_t b=0;
967 switch(st3Multiplier) {
968 case 4:
969 b|=*stage3++;
970 U_FALLTHROUGH[[clang::fallthrough]];
971 case 3:
972 b|=*stage3++;
973 U_FALLTHROUGH[[clang::fallthrough]];
974 case 2:
975 b|=stage3[0]|stage3[1];
976 stage3+=2;
977 U_FALLTHROUGH[[clang::fallthrough]];
978 default:
979 break;
980 }
981 if(b!=0) {
982 sa->add(sa->set, c);
983 }
984 }
985 st3>>=1;
986 } while((++c&0xf)!=0);
987 break;
988 case UCNV_SET_FILTER_DBCS_ONLY:
989 /* Ignore single-byte results (<0x100). */
990 do {
991 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
992 sa->add(sa->set, c);
993 }
994 st3>>=1;
995 stage3+=2; /* +=st3Multiplier */
996 } while((++c&0xf)!=0);
997 break;
998 case UCNV_SET_FILTER_2022_CN:
999 /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
1000 do {
1001 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
1002 sa->add(sa->set, c);
1003 }
1004 st3>>=1;
1005 stage3+=3; /* +=st3Multiplier */
1006 } while((++c&0xf)!=0);
1007 break;
1008 case UCNV_SET_FILTER_SJIS:
1009 /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
1010 do {
1011 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
1012 sa->add(sa->set, c);
1013 }
1014 st3>>=1;
1015 stage3+=2; /* +=st3Multiplier */
1016 } while((++c&0xf)!=0);
1017 break;
1018 case UCNV_SET_FILTER_GR94DBCS:
1019 /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
1020 do {
1021 if( ((st3&1)!=0 || useFallback) &&
1022 (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
1023 (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1024 ) {
1025 sa->add(sa->set, c);
1026 }
1027 st3>>=1;
1028 stage3+=2; /* +=st3Multiplier */
1029 } while((++c&0xf)!=0);
1030 break;
1031 case UCNV_SET_FILTER_HZ:
1032 /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
1033 do {
1034 if( ((st3&1)!=0 || useFallback) &&
1035 (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
1036 (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1037 ) {
1038 sa->add(sa->set, c);
1039 }
1040 st3>>=1;
1041 stage3+=2; /* +=st3Multiplier */
1042 } while((++c&0xf)!=0);
1043 break;
1044 default:
1045 *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
1046 return;
1047 }
1048 } else {
1049 c+=16; /* empty stage 3 block */
1050 }
1051 }
1052 } else {
1053 c+=1024; /* empty stage 2 block */
1054 }
1055 }
1056 }
1057
1058 ucnv_extGetUnicodeSetucnv_extGetUnicodeSet_71(sharedData, sa, which, filter, pErrorCode);
1059}
1060
1061U_CFUNCextern "C" void
1062ucnv_MBCSGetUnicodeSetForUnicodeucnv_MBCSGetUnicodeSetForUnicode_71(const UConverterSharedData *sharedData,
1063 const USetAdder *sa,
1064 UConverterUnicodeSet which,
1065 UErrorCode *pErrorCode) {
1066 ucnv_MBCSGetFilteredUnicodeSetForUnicodeucnv_MBCSGetFilteredUnicodeSetForUnicode_71(
1067 sharedData, sa, which,
1068 sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
1069 UCNV_SET_FILTER_DBCS_ONLY :
1070 UCNV_SET_FILTER_NONE,
1071 pErrorCode);
1072}
1073
1074static void U_CALLCONV
1075ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
1076 const USetAdder *sa,
1077 UConverterUnicodeSet which,
1078 UErrorCode *pErrorCode) {
1079 if(cnv->options&_MBCS_OPTION_GB180300x8000) {
1080 sa->addRange(sa->set, 0, 0xd7ff);
1081 sa->addRange(sa->set, 0xe000, 0x10ffff);
1082 } else {
1083 ucnv_MBCSGetUnicodeSetForUnicodeucnv_MBCSGetUnicodeSetForUnicode_71(cnv->sharedData, sa, which, pErrorCode);
1084 }
1085}
1086
1087/* conversion extensions for input not in the main table -------------------- */
1088
1089/*
1090 * Hardcoded extension handling for GB 18030.
1091 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
1092 *
1093 * In the future, conversion extensions may handle m:n mappings and delta tables,
1094 * see https://htmlpreview.github.io/?https://github.com/unicode-org/icu-docs/blob/main/design/conversion/conversion_extensions.html
1095 *
1096 * If an input character cannot be mapped, then these functions set an error
1097 * code. The framework will then call the callback function.
1098 */
1099
1100/*
1101 * @return if(U_FAILURE) return the code point for cnv->fromUChar32
1102 * else return 0 after output has been written to the target
1103 */
1104static UChar32
1105_extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
1106 UChar32 cp,
1107 const UChar **source, const UChar *sourceLimit,
1108 uint8_t **target, const uint8_t *targetLimit,
1109 int32_t **offsets, int32_t sourceIndex,
1110 UBool flush,
1111 UErrorCode *pErrorCode) {
1112 const int32_t *cx;
1113
1114 cnv->useSubChar1=FALSE0;
1115
1116 if( (cx=sharedData->mbcs.extIndexes)!=NULL__null &&
1117 ucnv_extInitialMatchFromUucnv_extInitialMatchFromU_71(
1118 cnv, cx,
1119 cp, source, sourceLimit,
1120 (char **)target, (char *)targetLimit,
1121 offsets, sourceIndex,
1122 flush,
1123 pErrorCode)
1124 ) {
1125 return 0; /* an extension mapping handled the input */
1126 }
1127
1128 /* GB 18030 */
1129 if((cnv->options&_MBCS_OPTION_GB180300x8000)!=0) {
1130 const uint32_t *range;
1131 int32_t i;
1132
1133 range=gb18030Ranges[0];
1134 for(i=0; i<UPRV_LENGTHOF(gb18030Ranges)(int32_t)(sizeof(gb18030Ranges)/sizeof((gb18030Ranges)[0])); range+=4, ++i) {
1135 if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
1136 /* found the Unicode code point, output the four-byte sequence for it */
1137 uint32_t linear;
1138 char bytes[4];
1139
1140 /* get the linear value of the first GB 18030 code in this range */
1141 linear=range[2]-LINEAR_18030_BASE((((0x81)*10+(0x30))*126L+(0x81))*10L+(0x30));
1142
1143 /* add the offset from the beginning of the range */
1144 linear+=((uint32_t)cp-range[0]);
1145
1146 /* turn this into a four-byte sequence */
1147 bytes[3]=(char)(0x30+linear%10); linear/=10;
1148 bytes[2]=(char)(0x81+linear%126); linear/=126;
1149 bytes[1]=(char)(0x30+linear%10); linear/=10;
1150 bytes[0]=(char)(0x81+linear);
1151
1152 /* output this sequence */
1153 ucnv_fromUWriteBytesucnv_fromUWriteBytes_71(cnv,
1154 bytes, 4, (char **)target, (char *)targetLimit,
1155 offsets, sourceIndex, pErrorCode);
1156 return 0;
1157 }
1158 }
1159 }
1160
1161 /* no mapping */
1162 *pErrorCode=U_INVALID_CHAR_FOUND;
1163 return cp;
1164}
1165
1166/*
1167 * Input sequence: cnv->toUBytes[0..length[
1168 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1169 * else return 0 after output has been written to the target
1170 */
1171static int8_t
1172_extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1173 int8_t length,
1174 const uint8_t **source, const uint8_t *sourceLimit,
1175 UChar **target, const UChar *targetLimit,
1176 int32_t **offsets, int32_t sourceIndex,
1177 UBool flush,
1178 UErrorCode *pErrorCode) {
1179 const int32_t *cx;
1180
1181 if( (cx=sharedData->mbcs.extIndexes)!=NULL__null &&
1182 ucnv_extInitialMatchToUucnv_extInitialMatchToU_71(
1183 cnv, cx,
1184 length, (const char **)source, (const char *)sourceLimit,
1185 target, targetLimit,
1186 offsets, sourceIndex,
1187 flush,
1188 pErrorCode)
1189 ) {
1190 return 0; /* an extension mapping handled the input */
1191 }
1192
1193 /* GB 18030 */
1194 if(length==4 && (cnv->options&_MBCS_OPTION_GB180300x8000)!=0) {
1195 const uint32_t *range;
1196 uint32_t linear;
1197 int32_t i;
1198
1199 linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3])((((cnv->toUBytes[0])*10+(cnv->toUBytes[1]))*126L+(cnv->
toUBytes[2]))*10L+(cnv->toUBytes[3]))
;
1200 range=gb18030Ranges[0];
1201 for(i=0; i<UPRV_LENGTHOF(gb18030Ranges)(int32_t)(sizeof(gb18030Ranges)/sizeof((gb18030Ranges)[0])); range+=4, ++i) {
1202 if(range[2]<=linear && linear<=range[3]) {
1203 /* found the sequence, output the Unicode code point for it */
1204 *pErrorCode=U_ZERO_ERROR;
1205
1206 /* add the linear difference between the input and start sequences to the start code point */
1207 linear=range[0]+(linear-range[2]);
1208
1209 /* output this code point */
1210 ucnv_toUWriteCodePointucnv_toUWriteCodePoint_71(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1211
1212 return 0;
1213 }
1214 }
1215 }
1216
1217 /* no mapping */
1218 *pErrorCode=U_INVALID_CHAR_FOUND;
1219 return length;
1220}
1221
1222/* EBCDIC swap LF<->NL ------------------------------------------------------ */
1223
1224/*
1225 * This code modifies a standard EBCDIC<->Unicode mapping table for
1226 * OS/390 (z/OS) Unix System Services (Open Edition).
1227 * The difference is in the mapping of Line Feed and New Line control codes:
1228 * Standard EBCDIC maps
1229 *
1230 * <U000A> \x25 |0
1231 * <U0085> \x15 |0
1232 *
1233 * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1234 * mapping
1235 *
1236 * <U000A> \x15 |0
1237 * <U0085> \x25 |0
1238 *
1239 * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1240 * by copying it into allocated memory and swapping the LF and NL values.
1241 * It allows to support the same EBCDIC charset in both versions without
1242 * duplicating the entire installed table.
1243 */
1244
1245/* standard EBCDIC codes */
1246#define EBCDIC_LF0x25 0x25
1247#define EBCDIC_NL0x15 0x15
1248
1249/* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1250#define EBCDIC_RT_LF0xf25 0xf25
1251#define EBCDIC_RT_NL0xf15 0xf15
1252
1253/* Unicode code points */
1254#define U_LF0x0a 0x0a
1255#define U_NL0x85 0x85
1256
1257static UBool
1258_EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1259 UConverterMBCSTable *mbcsTable;
1260
1261 const uint16_t *table, *results;
1262 const uint8_t *bytes;
1263
1264 int32_t (*newStateTable)[256];
1265 uint16_t *newResults;
1266 uint8_t *p;
1267 char *name;
1268
1269 uint32_t stage2Entry;
1270 uint32_t size, sizeofFromUBytes;
1271
1272 mbcsTable=&sharedData->mbcs;
1273
1274 table=mbcsTable->fromUnicodeTable;
1275 bytes=mbcsTable->fromUnicodeBytes;
1276 results=(const uint16_t *)bytes;
1277
1278 /*
1279 * Check that this is an EBCDIC table with SBCS portion -
1280 * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1281 *
1282 * If not, ignore the option. Options are always ignored if they do not apply.
1283 */
1284 if(!(
1285 (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1286 mbcsTable->stateTable[0][EBCDIC_LF0x25]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF)(int32_t)(0x80000000|((int32_t)(0)<<24L)|((MBCS_STATE_VALID_DIRECT_16
)<<20L)|(0x0a))
&&
1287 mbcsTable->stateTable[0][EBCDIC_NL0x15]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)(int32_t)(0x80000000|((int32_t)(0)<<24L)|((MBCS_STATE_VALID_DIRECT_16
)<<20L)|(0x85))
1288 )) {
1289 return FALSE0;
1290 }
1291
1292 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1293 if(!(
1294 EBCDIC_RT_LF0xf25==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF)(results)[ (table)[ (table)[(0x0a)>>10] +(((0x0a)>>
4)&0x3f) ] +((0x0a)&0xf) ]
&&
1295 EBCDIC_RT_NL0xf15==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)(results)[ (table)[ (table)[(0x85)>>10] +(((0x85)>>
4)&0x3f) ] +((0x85)&0xf) ]
1296 )) {
1297 return FALSE0;
1298 }
1299 } else /* MBCS_OUTPUT_2_SISO */ {
1300 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF)((const uint32_t *)(table))[ (table)[(0x0a)>>10] +(((0x0a
)>>4)&0x3f) ]
;
1301 if(!(
1302 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)( ((stage2Entry) & ((uint32_t)1<< (16+((0x0a)&0xf
)) )) !=0)
!=0 &&
1303 EBCDIC_LF0x25==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)((uint16_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
0x0a)&0xf)]
1304 )) {
1305 return FALSE0;
1306 }
1307
1308 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL)((const uint32_t *)(table))[ (table)[(0x85)>>10] +(((0x85
)>>4)&0x3f) ]
;
1309 if(!(
1310 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)( ((stage2Entry) & ((uint32_t)1<< (16+((0x85)&0xf
)) )) !=0)
!=0 &&
1311 EBCDIC_NL0x15==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)((uint16_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
0x85)&0xf)]
1312 )) {
1313 return FALSE0;
1314 }
1315 }
1316
1317 if(mbcsTable->fromUBytesLength>0) {
1318 /*
1319 * We _know_ the number of bytes in the fromUnicodeBytes array
1320 * starting with header.version 4.1.
1321 */
1322 sizeofFromUBytes=mbcsTable->fromUBytesLength;
1323 } else {
1324 /*
1325 * Otherwise:
1326 * There used to be code to enumerate the fromUnicode
1327 * trie and find the highest entry, but it was removed in ICU 3.2
1328 * because it was not tested and caused a low code coverage number.
1329 * See Jitterbug 3674.
1330 * This affects only some .cnv file formats with a header.version
1331 * below 4.1, and only when swaplfnl is requested.
1332 *
1333 * ucnvmbcs.c revision 1.99 is the last one with the
1334 * ucnv_MBCSSizeofFromUBytes() function.
1335 */
1336 *pErrorCode=U_INVALID_FORMAT_ERROR;
1337 return FALSE0;
1338 }
1339
1340 /*
1341 * The table has an appropriate format.
1342 * Allocate and build
1343 * - a modified to-Unicode state table
1344 * - a modified from-Unicode output array
1345 * - a converter name string with the swap option appended
1346 */
1347 size=
1348 mbcsTable->countStates*1024+
1349 sizeofFromUBytes+
1350 UCNV_MAX_CONVERTER_NAME_LENGTH60+20;
1351 p=(uint8_t *)uprv_mallocuprv_malloc_71(size);
1352 if(p==NULL__null) {
1353 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1354 return FALSE0;
1355 }
1356
1357 /* copy and modify the to-Unicode state table */
1358 newStateTable=(int32_t (*)[256])p;
1359 uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(newStateTable
, mbcsTable->stateTable, mbcsTable->countStates*1024); }
while (false)
;
1360
1361 newStateTable[0][EBCDIC_LF0x25]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)(int32_t)(0x80000000|((int32_t)(0)<<24L)|((MBCS_STATE_VALID_DIRECT_16
)<<20L)|(0x85))
;
1362 newStateTable[0][EBCDIC_NL0x15]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF)(int32_t)(0x80000000|((int32_t)(0)<<24L)|((MBCS_STATE_VALID_DIRECT_16
)<<20L)|(0x0a))
;
1363
1364 /* copy and modify the from-Unicode result table */
1365 newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1366 uprv_memcpy(newResults, bytes, sizeofFromUBytes)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(newResults
, bytes, sizeofFromUBytes); } while (false)
;
1367
1368 /* conveniently, the table access macros work on the left side of expressions */
1369 if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1370 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)(newResults)[ (table)[ (table)[(0x0a)>>10] +(((0x0a)>>
4)&0x3f) ] +((0x0a)&0xf) ]
=EBCDIC_RT_NL0xf15;
1371 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)(newResults)[ (table)[ (table)[(0x85)>>10] +(((0x85)>>
4)&0x3f) ] +((0x85)&0xf) ]
=EBCDIC_RT_LF0xf25;
1372 } else /* MBCS_OUTPUT_2_SISO */ {
1373 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF)((const uint32_t *)(table))[ (table)[(0x0a)>>10] +(((0x0a
)>>4)&0x3f) ]
;
1374 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)((uint16_t *)(newResults))[16*(uint32_t)(uint16_t)(stage2Entry
)+((0x0a)&0xf)]
=EBCDIC_NL0x15;
1375
1376 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL)((const uint32_t *)(table))[ (table)[(0x85)>>10] +(((0x85
)>>4)&0x3f) ]
;
1377 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)((uint16_t *)(newResults))[16*(uint32_t)(uint16_t)(stage2Entry
)+((0x85)&0xf)]
=EBCDIC_LF0x25;
1378 }
1379
1380 /* set the canonical converter name */
1381 name=(char *)newResults+sizeofFromUBytes;
1382 uprv_strcpy(name, sharedData->staticData->name):: strcpy(name, sharedData->staticData->name);
1383 uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING):: strcat(name, ",swaplfnl");
1384
1385 /* set the pointers */
1386 icu::umtx_lockumtx_lock_71(NULL__null);
1387 if(mbcsTable->swapLFNLStateTable==NULL__null) {
1388 mbcsTable->swapLFNLStateTable=newStateTable;
1389 mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1390 mbcsTable->swapLFNLName=name;
1391
1392 newStateTable=NULL__null;
1393 }
1394 icu::umtx_unlockumtx_unlock_71(NULL__null);
1395
1396 /* release the allocated memory if another thread beat us to it */
1397 if(newStateTable!=NULL__null) {
1398 uprv_freeuprv_free_71(newStateTable);
1399 }
1400 return TRUE1;
1401}
1402
1403/* reconstitute omitted fromUnicode data ------------------------------------ */
1404
1405/* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1406static UBool U_CALLCONV
1407writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1408 UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1409 const uint16_t *table;
1410 uint32_t *stage2;
1411 uint8_t *bytes, *p;
1412 UChar32 c;
1413 int32_t i, st3;
1414
1415 table=mbcsTable->fromUnicodeTable;
1416 bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1417
1418 /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1419 switch(mbcsTable->outputType) {
1420 case MBCS_OUTPUT_3_EUC:
1421 if(value<=0xffff) {
1422 /* short sequences are stored directly */
1423 /* code set 0 or 1 */
1424 } else if(value<=0x8effff) {
1425 /* code set 2 */
1426 value&=0x7fff;
1427 } else /* first byte is 0x8f */ {
1428 /* code set 3 */
1429 value&=0xff7f;
1430 }
1431 break;
1432 case MBCS_OUTPUT_4_EUC:
1433 if(value<=0xffffff) {
1434 /* short sequences are stored directly */
1435 /* code set 0 or 1 */
1436 } else if(value<=0x8effffff) {
1437 /* code set 2 */
1438 value&=0x7fffff;
1439 } else /* first byte is 0x8f */ {
1440 /* code set 3 */
1441 value&=0xff7fff;
1442 }
1443 break;
1444 default:
1445 break;
1446 }
1447
1448 for(i=0; i<=0x1f; ++value, ++i) {
1449 c=codePoints[i];
1450 if(c<0) {
1451 continue;
1452 }
1453
1454 /* locate the stage 2 & 3 data */
1455 stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1456 p=bytes;
1457 st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1458
1459 /* write the codepage bytes into stage 3 */
1460 switch(mbcsTable->outputType) {
1461 case MBCS_OUTPUT_3:
1462 case MBCS_OUTPUT_4_EUC:
1463 p+=st3*3;
1464 p[0]=(uint8_t)(value>>16);
1465 p[1]=(uint8_t)(value>>8);
1466 p[2]=(uint8_t)value;
1467 break;
1468 case MBCS_OUTPUT_4:
1469 ((uint32_t *)p)[st3]=value;
1470 break;
1471 default:
1472 /* 2 bytes per character */
1473 ((uint16_t *)p)[st3]=(uint16_t)value;
1474 break;
1475 }
1476
1477 /* set the roundtrip flag */
1478 *stage2|=(1UL<<(16+(c&0xf)));
1479 }
1480 return TRUE1;
1481 }
1482
1483static void
1484reconstituteData(UConverterMBCSTable *mbcsTable,
1485 uint32_t stage1Length, uint32_t stage2Length,
1486 uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */
1487 UErrorCode *pErrorCode) {
1488 uint16_t *stage1;
1489 uint32_t *stage2;
1490 uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1491 mbcsTable->reconstitutedData=(uint8_t *)uprv_mallocuprv_malloc_71(dataLength);
1492 if(mbcsTable->reconstitutedData==NULL__null) {
1493 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1494 return;
1495 }
1496 uprv_memset(mbcsTable->reconstitutedData, 0, dataLength):: memset(mbcsTable->reconstitutedData, 0, dataLength);
1497
1498 /* copy existing data and reroute the pointers */
1499 stage1=(uint16_t *)mbcsTable->reconstitutedData;
1500 uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(stage1, mbcsTable
->fromUnicodeTable, stage1Length*2); } while (false)
;
1501
1502 stage2=(uint32_t *)(stage1+stage1Length);
1503 uprv_memcpy(stage2+(fullStage2Length-stage2Length),do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(stage2+(fullStage2Length
-stage2Length), mbcsTable->fromUnicodeTable+stage1Length, stage2Length
*4); } while (false)
1504 mbcsTable->fromUnicodeTable+stage1Length,do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(stage2+(fullStage2Length
-stage2Length), mbcsTable->fromUnicodeTable+stage1Length, stage2Length
*4); } while (false)
1505 stage2Length*4)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(stage2+(fullStage2Length
-stage2Length), mbcsTable->fromUnicodeTable+stage1Length, stage2Length
*4); } while (false)
;
1506
1507 mbcsTable->fromUnicodeTable=stage1;
1508 mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1509
1510 /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1511 stage2=(uint32_t *)stage1;
1512
1513 /* reconstitute the initial part of stage 2 from the mbcsIndex */
1514 {
1515 int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1516 int32_t stageUTF8Index=0;
1517 int32_t st1, st2, st3, i;
1518
1519 for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1520 st2=stage1[st1];
1521 if(st2!=(int32_t)stage1Length/2) {
1522 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1523 for(i=0; i<16; ++i) {
1524 st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1525 if(st3!=0) {
1526 /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1527 st3>>=4;
1528 /*
1529 * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1530 * allocated together as a single 64-block for access from the mbcsIndex
1531 */
1532 stage2[st2++]=st3++;
1533 stage2[st2++]=st3++;
1534 stage2[st2++]=st3++;
1535 stage2[st2++]=st3;
1536 } else {
1537 /* no stage 3 block, skip */
1538 st2+=4;
1539 }
1540 }
1541 } else {
1542 /* no stage 2 block, skip */
1543 stageUTF8Index+=16;
1544 }
1545 }
1546 }
1547
1548 /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1549 ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1550}
1551
1552/* MBCS setup functions ----------------------------------------------------- */
1553
1554static void U_CALLCONV
1555ucnv_MBCSLoad(UConverterSharedData *sharedData,
1556 UConverterLoadArgs *pArgs,
1557 const uint8_t *raw,
1558 UErrorCode *pErrorCode) {
1559 UDataInfo info;
1560 UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1561 _MBCSHeader *header=(_MBCSHeader *)raw;
1562 uint32_t offset;
1563 uint32_t headerLength;
1564 UBool noFromU=FALSE0;
1565
1566 if(header->version[0]==4) {
1567 headerLength=MBCS_HEADER_V4_LENGTH;
1568 } else if(header->version[0]==5 && header->version[1]>=3 &&
1569 (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1570 headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1571 noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1572 } else {
1573 *pErrorCode=U_INVALID_TABLE_FORMAT;
1574 return;
1575 }
1576
1577 mbcsTable->outputType=(uint8_t)header->flags;
1578 if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1579 *pErrorCode=U_INVALID_TABLE_FORMAT;
1580 return;
1581 }
1582
1583 /* extension data, header version 4.2 and higher */
1584 offset=header->flags>>8;
1585 if(offset!=0) {
1586 mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1587 }
1588
1589 if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1590 UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER{ (int32_t)sizeof(UConverterLoadArgs), 0, false, false, 0, 0,
__null, __null, __null }
;
1591 UConverterSharedData *baseSharedData;
1592 const int32_t *extIndexes;
1593 const char *baseName;
1594
1595 /* extension-only file, load the base table and set values appropriately */
1596 if((extIndexes=mbcsTable->extIndexes)==NULL__null) {
1597 /* extension-only file without extension */
1598 *pErrorCode=U_INVALID_TABLE_FORMAT;
1599 return;
1600 }
1601
1602 if(pArgs->nestedLoads!=1) {
1603 /* an extension table must not be loaded as a base table */
1604 *pErrorCode=U_INVALID_TABLE_FILE;
1605 return;
1606 }
1607
1608 /* load the base table */
1609 baseName=(const char *)header+headerLength*4;
1610 if(0==uprv_strcmp(baseName, sharedData->staticData->name):: strcmp(baseName, sharedData->staticData->name)) {
1611 /* forbid loading this same extension-only file */
1612 *pErrorCode=U_INVALID_TABLE_FORMAT;
1613 return;
1614 }
1615
1616 /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1617 args.size=sizeof(UConverterLoadArgs);
1618 args.nestedLoads=2;
1619 args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1620 args.reserved=pArgs->reserved;
1621 args.options=pArgs->options;
1622 args.pkg=pArgs->pkg;
1623 args.name=baseName;
1624 baseSharedData=ucnv_loaducnv_load_71(&args, pErrorCode);
1625 if(U_FAILURE(*pErrorCode)) {
1626 return;
1627 }
1628 if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1629 baseSharedData->mbcs.baseSharedData!=NULL__null
1630 ) {
1631 ucnv_unloaducnv_unload_71(baseSharedData);
1632 *pErrorCode=U_INVALID_TABLE_FORMAT;
1633 return;
1634 }
1635 if(pArgs->onlyTestIsLoadable) {
1636 /*
1637 * Exit as soon as we know that we can load the converter
1638 * and the format is valid and supported.
1639 * The worst that can happen in the following code is a memory
1640 * allocation error.
1641 */
1642 ucnv_unloaducnv_unload_71(baseSharedData);
1643 return;
1644 }
1645
1646 /* copy the base table data */
1647 uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable))do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(mbcsTable
, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
} while (false)
;
1648
1649 /* overwrite values with relevant ones for the extension converter */
1650 mbcsTable->baseSharedData=baseSharedData;
1651 mbcsTable->extIndexes=extIndexes;
1652
1653 /*
1654 * It would be possible to share the swapLFNL data with a base converter,
1655 * but the generated name would have to be different, and the memory
1656 * would have to be free'd only once.
1657 * It is easier to just create the data for the extension converter
1658 * separately when it is requested.
1659 */
1660 mbcsTable->swapLFNLStateTable=NULL__null;
1661 mbcsTable->swapLFNLFromUnicodeBytes=NULL__null;
1662 mbcsTable->swapLFNLName=NULL__null;
1663
1664 /*
1665 * The reconstitutedData must be deleted only when the base converter
1666 * is unloaded.
1667 */
1668 mbcsTable->reconstitutedData=NULL__null;
1669
1670 /*
1671 * Set a special, runtime-only outputType if the extension converter
1672 * is a DBCS version of a base converter that also maps single bytes.
1673 */
1674 if( sharedData->staticData->conversionType==UCNV_DBCS ||
1675 (sharedData->staticData->conversionType==UCNV_MBCS &&
1676 sharedData->staticData->minBytesPerChar>=2)
1677 ) {
1678 if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1679 /* the base converter is SI/SO-stateful */
1680 int32_t entry;
1681
1682 /* get the dbcs state from the state table entry for SO=0x0e */
1683 entry=mbcsTable->stateTable[0][0xe];
1684 if( MBCS_ENTRY_IS_FINAL(entry)((entry)<0) &&
1685 MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)==MBCS_STATE_CHANGE_ONLY &&
1686 MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f)!=0
1687 ) {
1688 mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f);
1689
1690 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1691 }
1692 } else if(
1693 baseSharedData->staticData->conversionType==UCNV_MBCS &&
1694 baseSharedData->staticData->minBytesPerChar==1 &&
1695 baseSharedData->staticData->maxBytesPerChar==2 &&
1696 mbcsTable->countStates<=127
1697 ) {
1698 /* non-stateful base converter, need to modify the state table */
1699 int32_t (*newStateTable)[256];
1700 int32_t *state;
1701 int32_t i, count;
1702
1703 /* allocate a new state table and copy the base state table contents */
1704 count=mbcsTable->countStates;
1705 newStateTable=(int32_t (*)[256])uprv_mallocuprv_malloc_71((count+1)*1024);
1706 if(newStateTable==NULL__null) {
1707 ucnv_unloaducnv_unload_71(baseSharedData);
1708 *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1709 return;
1710 }
1711
1712 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(newStateTable
, mbcsTable->stateTable, count*1024); } while (false)
;
1713
1714 /* change all final single-byte entries to go to a new all-illegal state */
1715 state=newStateTable[0];
1716 for(i=0; i<256; ++i) {
1717 if(MBCS_ENTRY_IS_FINAL(state[i])((state[i])<0)) {
1718 state[i]=MBCS_ENTRY_TRANSITION(count, 0)(int32_t)(((int32_t)(count)<<24L)|(0));
1719 }
1720 }
1721
1722 /* build the new all-illegal state */
1723 state=newStateTable[count];
1724 for(i=0; i<256; ++i) {
1725 state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0)(int32_t)(0x80000000|((int32_t)(0)<<24L)|((MBCS_STATE_ILLEGAL
)<<20L)|(0))
;
1726 }
1727 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1728 mbcsTable->countStates=(uint8_t)(count+1);
1729 mbcsTable->stateTableOwned=TRUE1;
1730
1731 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1732 }
1733 }
1734
1735 /*
1736 * unlike below for files with base tables, do not get the unicodeMask
1737 * from the sharedData; instead, use the base table's unicodeMask,
1738 * which we copied in the memcpy above;
1739 * this is necessary because the static data unicodeMask, especially
1740 * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1741 */
1742 } else {
1743 /* conversion file with a base table; an additional extension table is optional */
1744 /* make sure that the output type is known */
1745 switch(mbcsTable->outputType) {
1746 case MBCS_OUTPUT_1:
1747 case MBCS_OUTPUT_2:
1748 case MBCS_OUTPUT_3:
1749 case MBCS_OUTPUT_4:
1750 case MBCS_OUTPUT_3_EUC:
1751 case MBCS_OUTPUT_4_EUC:
1752 case MBCS_OUTPUT_2_SISO:
1753 /* OK */
1754 break;
1755 default:
1756 *pErrorCode=U_INVALID_TABLE_FORMAT;
1757 return;
1758 }
1759 if(pArgs->onlyTestIsLoadable) {
1760 /*
1761 * Exit as soon as we know that we can load the converter
1762 * and the format is valid and supported.
1763 * The worst that can happen in the following code is a memory
1764 * allocation error.
1765 */
1766 return;
1767 }
1768
1769 mbcsTable->countStates=(uint8_t)header->countStates;
1770 mbcsTable->countToUFallbacks=header->countToUFallbacks;
1771 mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1772 mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1773 mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1774
1775 mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1776 mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1777 mbcsTable->fromUBytesLength=header->fromUBytesLength;
1778
1779 /*
1780 * converter versions 6.1 and up contain a unicodeMask that is
1781 * used here to select the most efficient function implementations
1782 */
1783 info.size=sizeof(UDataInfo);
1784 udata_getInfoudata_getInfo_71((UDataMemory *)sharedData->dataMemory, &info);
1785 if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1786 /* mask off possible future extensions to be safe */
1787 mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1788 } else {
1789 /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1790 mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY1|UCNV_HAS_SURROGATES2;
1791 }
1792
1793 /*
1794 * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1795 * Check for the header version, SBCS vs. MBCS, and for whether the
1796 * data structures are optimized for code points as high as what the
1797 * runtime code is designed for.
1798 * The implementation does not handle mapping tables with entries for
1799 * unpaired surrogates.
1800 */
1801 if( header->version[1]>=3 &&
1802 (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES2)==0 &&
1803 (mbcsTable->countStates==1 ?
1804 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1805 (header->version[2]>=(MBCS_FAST_MAX>>8))
1806 )
1807 ) {
1808 mbcsTable->utf8Friendly=TRUE1;
1809
1810 if(mbcsTable->countStates==1) {
1811 /*
1812 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1813 * Build a table with indexes to each block, to be used instead of
1814 * the regular stage 1/2 table.
1815 */
1816 int32_t i;
1817 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1818 mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1819 }
1820 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1821 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1822 } else {
1823 /*
1824 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1825 * The .cnv file is prebuilt with an additional stage table with indexes
1826 * to each block.
1827 */
1828 mbcsTable->mbcsIndex=(const uint16_t *)
1829 (mbcsTable->fromUnicodeBytes+
1830 (noFromU ? 0 : mbcsTable->fromUBytesLength));
1831 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1832 }
1833 }
1834
1835 /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1836 {
1837 uint32_t asciiRoundtrips=0xffffffff;
1838 int32_t i;
1839
1840 for(i=0; i<0x80; ++i) {
1841 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)(int32_t)(0x80000000|((int32_t)(0)<<24L)|((MBCS_STATE_VALID_DIRECT_16
)<<20L)|(i))
) {
1842 asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1843 }
1844 }
1845 mbcsTable->asciiRoundtrips=asciiRoundtrips;
1846 }
1847
1848 if(noFromU) {
1849 uint32_t stage1Length=
1850 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY1 ?
1851 0x440 : 0x40;
1852 uint32_t stage2Length=
1853 (header->offsetFromUBytes-header->offsetFromUTable)/4-
1854 stage1Length/2;
1855 reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1856 }
1857 }
1858
1859 /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1860 if(mbcsTable->utf8Friendly) {
1861 if(mbcsTable->countStates==1) {
1862 sharedData->impl=&_SBCSUTF8Impl;
1863 } else {
1864 if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1865 sharedData->impl=&_DBCSUTF8Impl;
1866 }
1867 }
1868 }
1869
1870 if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1871 /*
1872 * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1873 * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1874 */
1875 mbcsTable->asciiRoundtrips=0;
1876 }
1877}
1878
1879static void U_CALLCONV
1880ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1881 UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1882
1883 if(mbcsTable->swapLFNLStateTable!=NULL__null) {
1884 uprv_freeuprv_free_71(mbcsTable->swapLFNLStateTable);
1885 }
1886 if(mbcsTable->stateTableOwned) {
1887 uprv_freeuprv_free_71((void *)mbcsTable->stateTable);
1888 }
1889 if(mbcsTable->baseSharedData!=NULL__null) {
1890 ucnv_unloaducnv_unload_71(mbcsTable->baseSharedData);
1891 }
1892 if(mbcsTable->reconstitutedData!=NULL__null) {
1893 uprv_freeuprv_free_71(mbcsTable->reconstitutedData);
1894 }
1895}
1896
1897static void U_CALLCONV
1898ucnv_MBCSOpen(UConverter *cnv,
1899 UConverterLoadArgs *pArgs,
1900 UErrorCode *pErrorCode) {
1901 UConverterMBCSTable *mbcsTable;
1902 const int32_t *extIndexes;
1903 uint8_t outputType;
1904 int8_t maxBytesPerUChar;
1905
1906 if(pArgs->onlyTestIsLoadable) {
1907 return;
1908 }
1909
1910 mbcsTable=&cnv->sharedData->mbcs;
1911 outputType=mbcsTable->outputType;
1912
1913 if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1914 /* the swaplfnl option does not apply, remove it */
1915 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL0x10;
1916 }
1917
1918 if((pArgs->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
1919 /* do this because double-checked locking is broken */
1920 UBool isCached;
1921
1922 icu::umtx_lockumtx_lock_71(NULL__null);
1923 isCached=mbcsTable->swapLFNLStateTable!=NULL__null;
1924 icu::umtx_unlockumtx_unlock_71(NULL__null);
1925
1926 if(!isCached) {
1927 if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1928 if(U_FAILURE(*pErrorCode)) {
1929 return; /* something went wrong */
1930 }
1931
1932 /* the option does not apply, remove it */
1933 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL0x10;
1934 }
1935 }
1936 }
1937
1938 if(uprv_strstr(pArgs->name, "18030"):: strstr(pArgs->name, "18030")!=NULL__null) {
1939 if(uprv_strstr(pArgs->name, "gb18030"):: strstr(pArgs->name, "gb18030")!=NULL__null || uprv_strstr(pArgs->name, "GB18030"):: strstr(pArgs->name, "GB18030")!=NULL__null) {
1940 /* set a flag for GB 18030 mode, which changes the callback behavior */
1941 cnv->options|=_MBCS_OPTION_GB180300x8000;
1942 }
1943 } else if((uprv_strstr(pArgs->name, "KEIS"):: strstr(pArgs->name, "KEIS")!=NULL__null) || (uprv_strstr(pArgs->name, "keis"):: strstr(pArgs->name, "keis")!=NULL__null)) {
1944 /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1945 cnv->options|=_MBCS_OPTION_KEIS0x01000;
1946 } else if((uprv_strstr(pArgs->name, "JEF"):: strstr(pArgs->name, "JEF")!=NULL__null) || (uprv_strstr(pArgs->name, "jef"):: strstr(pArgs->name, "jef")!=NULL__null)) {
1947 /* set a flag for JEF converter, which changes the SI/SO character sequence */
1948 cnv->options|=_MBCS_OPTION_JEF0x02000;
1949 } else if((uprv_strstr(pArgs->name, "JIPS"):: strstr(pArgs->name, "JIPS")!=NULL__null) || (uprv_strstr(pArgs->name, "jips"):: strstr(pArgs->name, "jips")!=NULL__null)) {
1950 /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1951 cnv->options|=_MBCS_OPTION_JIPS0x04000;
1952 }
1953
1954 /* fix maxBytesPerUChar depending on outputType and options etc. */
1955 if(outputType==MBCS_OUTPUT_2_SISO) {
1956 cnv->maxBytesPerUChar=3; /* SO+DBCS */
1957 }
1958
1959 extIndexes=mbcsTable->extIndexes;
1960 if(extIndexes!=NULL__null) {
1961 maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes)((extIndexes)[UCNV_EXT_COUNT_BYTES]&0xff);
1962 if(outputType==MBCS_OUTPUT_2_SISO) {
1963 ++maxBytesPerUChar; /* SO + multiple DBCS */
1964 }
1965
1966 if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1967 cnv->maxBytesPerUChar=maxBytesPerUChar;
1968 }
1969 }
1970
1971#if 0
1972 /*
1973 * documentation of UConverter fields used for status
1974 * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1975 */
1976
1977 /* toUnicode */
1978 cnv->toUnicodeStatus=0; /* offset */
1979 cnv->mode=0; /* state */
1980 cnv->toULength=0; /* byteIndex */
1981
1982 /* fromUnicode */
1983 cnv->fromUChar32=0;
1984 cnv->fromUnicodeStatus=1; /* prevLength */
1985#endif
1986}
1987
1988U_CDECL_BEGINextern "C" {
1989
1990static const char* U_CALLCONV
1991ucnv_MBCSGetName(const UConverter *cnv) {
1992 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL__null) {
1993 return cnv->sharedData->mbcs.swapLFNLName;
1994 } else {
1995 return cnv->sharedData->staticData->name;
1996 }
1997}
1998U_CDECL_END}
1999
2000
2001/* MBCS-to-Unicode conversion functions ------------------------------------- */
2002
2003static UChar32 U_CALLCONV
2004ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
2005 const _MBCSToUFallback *toUFallbacks;
2006 uint32_t i, start, limit;
2007
2008 limit=mbcsTable->countToUFallbacks;
2009 if(limit>0) {
2010 /* do a binary search for the fallback mapping */
2011 toUFallbacks=mbcsTable->toUFallbacks;
2012 start=0;
2013 while(start<limit-1) {
2014 i=(start+limit)/2;
2015 if(offset<toUFallbacks[i].offset) {
2016 limit=i;
2017 } else {
2018 start=i;
2019 }
2020 }
2021
2022 /* did we really find it? */
2023 if(offset==toUFallbacks[start].offset) {
2024 return toUFallbacks[start].codePoint;
2025 }
2026 }
2027
2028 return 0xfffe;
2029}
2030
2031/* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
2032static void
2033ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2034 UErrorCode *pErrorCode) {
2035 UConverter *cnv;
2036 const uint8_t *source, *sourceLimit;
2037 UChar *target;
2038 const UChar *targetLimit;
2039 int32_t *offsets;
2040
2041 const int32_t (*stateTable)[256];
2042
2043 int32_t sourceIndex;
2044
2045 int32_t entry;
2046 UChar c;
2047 uint8_t action;
2048
2049 /* set up the local pointers */
2050 cnv=pArgs->converter;
2051 source=(const uint8_t *)pArgs->source;
2052 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2053 target=pArgs->target;
2054 targetLimit=pArgs->targetLimit;
2055 offsets=pArgs->offsets;
2056
2057 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
2058 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2059 } else {
2060 stateTable=cnv->sharedData->mbcs.stateTable;
2061 }
2062
2063 /* sourceIndex=-1 if the current character began in the previous buffer */
2064 sourceIndex=0;
2065
2066 /* conversion loop */
2067 while(source<sourceLimit) {
2068 /*
2069 * This following test is to see if available input would overflow the output.
2070 * It does not catch output of more than one code unit that
2071 * overflows as a result of a surrogate pair or callback output
2072 * from the last source byte.
2073 * Therefore, those situations also test for overflows and will
2074 * then break the loop, too.
2075 */
2076 if(target>=targetLimit) {
2077 /* target is full */
2078 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2079 break;
2080 }
2081
2082 entry=stateTable[0][*source++];
2083 /* MBCS_ENTRY_IS_FINAL(entry) */
2084
2085 /* test the most common case first */
2086 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)((entry)<(int32_t)0x80100000)) {
2087 /* output BMP code point */
2088 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2089 if(offsets!=NULL__null) {
2090 *offsets++=sourceIndex;
2091 }
2092
2093 /* normal end of action codes: prepare for a new character */
2094 ++sourceIndex;
2095 continue;
2096 }
2097
2098 /*
2099 * An if-else-if chain provides more reliable performance for
2100 * the most common cases compared to a switch.
2101 */
2102 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
2103 if(action==MBCS_STATE_VALID_DIRECT_20 ||
2104 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)true)
2105 ) {
2106 entry=MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff);
2107 /* output surrogate pair */
2108 *target++=(UChar)(0xd800|(UChar)(entry>>10));
2109 if(offsets!=NULL__null) {
2110 *offsets++=sourceIndex;
2111 }
2112 c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2113 if(target<targetLimit) {
2114 *target++=c;
2115 if(offsets!=NULL__null) {
2116 *offsets++=sourceIndex;
2117 }
2118 } else {
2119 /* target overflow */
2120 cnv->UCharErrorBuffer[0]=c;
2121 cnv->UCharErrorBufferLength=1;
2122 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2123 break;
2124 }
2125
2126 ++sourceIndex;
2127 continue;
2128 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2129 if(UCNV_TO_U_USE_FALLBACK(cnv)true) {
2130 /* output BMP code point */
2131 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2132 if(offsets!=NULL__null) {
2133 *offsets++=sourceIndex;
2134 }
2135
2136 ++sourceIndex;
2137 continue;
2138 }
2139 } else if(action==MBCS_STATE_UNASSIGNED) {
2140 /* just fall through */
2141 } else if(action==MBCS_STATE_ILLEGAL) {
2142 /* callback(illegal) */
2143 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2144 } else {
2145 /* reserved, must never occur */
2146 ++sourceIndex;
2147 continue;
2148 }
2149
2150 if(U_FAILURE(*pErrorCode)) {
2151 /* callback(illegal) */
2152 break;
2153 } else /* unassigned sequences indicated with byteIndex>0 */ {
2154 /* try an extension mapping */
2155 pArgs->source=(const char *)source;
2156 cnv->toUBytes[0]=*(source-1);
2157 cnv->toULength=_extToU(cnv, cnv->sharedData,
2158 1, &source, sourceLimit,
2159 &target, targetLimit,
2160 &offsets, sourceIndex,
2161 pArgs->flush,
2162 pErrorCode);
2163 sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2164
2165 if(U_FAILURE(*pErrorCode)) {
2166 /* not mappable or buffer overflow */
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* write back the updated pointers */
2173 pArgs->source=(const char *)source;
2174 pArgs->target=target;
2175 pArgs->offsets=offsets;
2176}
2177
2178/*
2179 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2180 * that only map to and from the BMP.
2181 * In addition to single-byte optimizations, the offset calculations
2182 * become much easier.
2183 */
2184static void
2185ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2186 UErrorCode *pErrorCode) {
2187 UConverter *cnv;
2188 const uint8_t *source, *sourceLimit, *lastSource;
2189 UChar *target;
2190 int32_t targetCapacity, length;
2191 int32_t *offsets;
2192
2193 const int32_t (*stateTable)[256];
2194
2195 int32_t sourceIndex;
2196
2197 int32_t entry;
2198 uint8_t action;
2199
2200 /* set up the local pointers */
2201 cnv=pArgs->converter;
2202 source=(const uint8_t *)pArgs->source;
2203 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2204 target=pArgs->target;
2205 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2206 offsets=pArgs->offsets;
2207
2208 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
2209 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2210 } else {
2211 stateTable=cnv->sharedData->mbcs.stateTable;
2212 }
2213
2214 /* sourceIndex=-1 if the current character began in the previous buffer */
2215 sourceIndex=0;
2216 lastSource=source;
2217
2218 /*
2219 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2220 * for the minimum of the sourceLength and targetCapacity
2221 */
2222 length=(int32_t)(sourceLimit-source);
2223 if(length<targetCapacity) {
2224 targetCapacity=length;
2225 }
2226
2227#if MBCS_UNROLL_SINGLE_TO_BMP1
2228 /* unrolling makes it faster on Pentium III/Windows 2000 */
2229 /* unroll the loop with the most common case */
2230unrolled:
2231 if(targetCapacity>=16) {
2232 int32_t count, loops, oredEntries;
2233
2234 loops=count=targetCapacity>>4;
2235 do {
2236 oredEntries=entry=stateTable[0][*source++];
2237 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2238 oredEntries|=entry=stateTable[0][*source++];
2239 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2240 oredEntries|=entry=stateTable[0][*source++];
2241 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2242 oredEntries|=entry=stateTable[0][*source++];
2243 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2244 oredEntries|=entry=stateTable[0][*source++];
2245 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2246 oredEntries|=entry=stateTable[0][*source++];
2247 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2248 oredEntries|=entry=stateTable[0][*source++];
2249 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2250 oredEntries|=entry=stateTable[0][*source++];
2251 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2252 oredEntries|=entry=stateTable[0][*source++];
2253 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2254 oredEntries|=entry=stateTable[0][*source++];
2255 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2256 oredEntries|=entry=stateTable[0][*source++];
2257 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2258 oredEntries|=entry=stateTable[0][*source++];
2259 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2260 oredEntries|=entry=stateTable[0][*source++];
2261 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2262 oredEntries|=entry=stateTable[0][*source++];
2263 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2264 oredEntries|=entry=stateTable[0][*source++];
2265 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2266 oredEntries|=entry=stateTable[0][*source++];
2267 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2268
2269 /* were all 16 entries really valid? */
2270 if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)((oredEntries)<(int32_t)0x80100000)) {
2271 /* no, return to the first of these 16 */
2272 source-=16;
2273 target-=16;
2274 break;
2275 }
2276 } while(--count>0);
2277 count=loops-count;
2278 targetCapacity-=16*count;
2279
2280 if(offsets!=NULL__null) {
2281 lastSource+=16*count;
2282 while(count>0) {
2283 *offsets++=sourceIndex++;
2284 *offsets++=sourceIndex++;
2285 *offsets++=sourceIndex++;
2286 *offsets++=sourceIndex++;
2287 *offsets++=sourceIndex++;
2288 *offsets++=sourceIndex++;
2289 *offsets++=sourceIndex++;
2290 *offsets++=sourceIndex++;
2291 *offsets++=sourceIndex++;
2292 *offsets++=sourceIndex++;
2293 *offsets++=sourceIndex++;
2294 *offsets++=sourceIndex++;
2295 *offsets++=sourceIndex++;
2296 *offsets++=sourceIndex++;
2297 *offsets++=sourceIndex++;
2298 *offsets++=sourceIndex++;
2299 --count;
2300 }
2301 }
2302 }
2303#endif
2304
2305 /* conversion loop */
2306 while(targetCapacity > 0 && source < sourceLimit) {
2307 entry=stateTable[0][*source++];
2308 /* MBCS_ENTRY_IS_FINAL(entry) */
2309
2310 /* test the most common case first */
2311 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)((entry)<(int32_t)0x80100000)) {
2312 /* output BMP code point */
2313 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2314 --targetCapacity;
2315 continue;
2316 }
2317
2318 /*
2319 * An if-else-if chain provides more reliable performance for
2320 * the most common cases compared to a switch.
2321 */
2322 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
2323 if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2324 if(UCNV_TO_U_USE_FALLBACK(cnv)true) {
2325 /* output BMP code point */
2326 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2327 --targetCapacity;
2328 continue;
2329 }
2330 } else if(action==MBCS_STATE_UNASSIGNED) {
2331 /* just fall through */
2332 } else if(action==MBCS_STATE_ILLEGAL) {
2333 /* callback(illegal) */
2334 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2335 } else {
2336 /* reserved, must never occur */
2337 continue;
2338 }
2339
2340 /* set offsets since the start or the last extension */
2341 if(offsets!=NULL__null) {
2342 int32_t count=(int32_t)(source-lastSource);
2343
2344 /* predecrement: do not set the offset for the callback-causing character */
2345 while(--count>0) {
2346 *offsets++=sourceIndex++;
2347 }
2348 /* offset and sourceIndex are now set for the current character */
2349 }
2350
2351 if(U_FAILURE(*pErrorCode)) {
2352 /* callback(illegal) */
2353 break;
2354 } else /* unassigned sequences indicated with byteIndex>0 */ {
2355 /* try an extension mapping */
2356 lastSource=source;
2357 cnv->toUBytes[0]=*(source-1);
2358 cnv->toULength=_extToU(cnv, cnv->sharedData,
2359 1, &source, sourceLimit,
2360 &target, pArgs->targetLimit,
2361 &offsets, sourceIndex,
2362 pArgs->flush,
2363 pErrorCode);
2364 sourceIndex+=1+(int32_t)(source-lastSource);
2365
2366 if(U_FAILURE(*pErrorCode)) {
2367 /* not mappable or buffer overflow */
2368 break;
2369 }
2370
2371 /* recalculate the targetCapacity after an extension mapping */
2372 targetCapacity=(int32_t)(pArgs->targetLimit-target);
2373 length=(int32_t)(sourceLimit-source);
2374 if(length<targetCapacity) {
2375 targetCapacity=length;
2376 }
2377 }
2378
2379#if MBCS_UNROLL_SINGLE_TO_BMP1
2380 /* unrolling makes it faster on Pentium III/Windows 2000 */
2381 goto unrolled;
2382#endif
2383 }
2384
2385 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2386 /* target is full */
2387 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2388 }
2389
2390 /* set offsets since the start or the last callback */
2391 if(offsets!=NULL__null) {
2392 size_t count=source-lastSource;
2393 while(count>0) {
2394 *offsets++=sourceIndex++;
2395 --count;
2396 }
2397 }
2398
2399 /* write back the updated pointers */
2400 pArgs->source=(const char *)source;
2401 pArgs->target=target;
2402 pArgs->offsets=offsets;
2403}
2404
2405static UBool
2406hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2407 const int32_t *row=stateTable[state];
2408 int32_t b, entry;
2409 /* First test for final entries in this state for some commonly valid byte values. */
2410 entry=row[0xa1];
2411 if( !MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0) &&
2412 MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)!=MBCS_STATE_ILLEGAL
2413 ) {
2414 return TRUE1;
2415 }
2416 entry=row[0x41];
2417 if( !MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0) &&
2418 MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)!=MBCS_STATE_ILLEGAL
2419 ) {
2420 return TRUE1;
2421 }
2422 /* Then test for final entries in this state. */
2423 for(b=0; b<=0xff; ++b) {
2424 entry=row[b];
2425 if( !MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0) &&
2426 MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)!=MBCS_STATE_ILLEGAL
2427 ) {
2428 return TRUE1;
2429 }
2430 }
2431 /* Then recurse for transition entries. */
2432 for(b=0; b<=0xff; ++b) {
2433 entry=row[b];
2434 if( MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0) &&
2435 hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24))
2436 ) {
2437 return TRUE1;
2438 }
2439 }
2440 return FALSE0;
2441}
2442
2443/*
2444 * Is byte b a single/lead byte in this state?
2445 * Recurse for transition states, because here we don't want to say that
2446 * b is a lead byte if all byte sequences that start with b are illegal.
2447 */
2448static UBool
2449isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2450 const int32_t *row=stateTable[state];
2451 int32_t entry=row[b];
2452 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) { /* lead byte */
2453 return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24));
2454 } else {
2455 uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
2456 if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2457 return FALSE0; /* SI/SO are illegal for DBCS-only conversion */
2458 } else {
2459 return action!=MBCS_STATE_ILLEGAL;
2460 }
2461 }
2462}
2463
2464U_CFUNCextern "C" void
2465ucnv_MBCSToUnicodeWithOffsetsucnv_MBCSToUnicodeWithOffsets_71(UConverterToUnicodeArgs *pArgs,
2466 UErrorCode *pErrorCode) {
2467 UConverter *cnv;
2468 const uint8_t *source, *sourceLimit;
2469 UChar *target;
2470 const UChar *targetLimit;
2471 int32_t *offsets;
2472
2473 const int32_t (*stateTable)[256];
2474 const uint16_t *unicodeCodeUnits;
2475
2476 uint32_t offset;
2477 uint8_t state;
2478 int8_t byteIndex;
2479 uint8_t *bytes;
2480
2481 int32_t sourceIndex, nextSourceIndex;
2482
2483 int32_t entry;
2484 UChar c;
2485 uint8_t action;
2486
2487 /* use optimized function if possible */
2488 cnv=pArgs->converter;
2489
2490 if(cnv->preToULength>0) {
2491 /*
2492 * pass sourceIndex=-1 because we continue from an earlier buffer
2493 * in the future, this may change with continuous offsets
2494 */
2495 ucnv_extContinueMatchToUucnv_extContinueMatchToU_71(cnv, pArgs, -1, pErrorCode);
2496
2497 if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2498 return;
2499 }
2500 }
2501
2502 if(cnv->sharedData->mbcs.countStates==1) {
2503 if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY1)) {
2504 ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2505 } else {
2506 ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2507 }
2508 return;
2509 }
2510
2511 /* set up the local pointers */
2512 source=(const uint8_t *)pArgs->source;
2513 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2514 target=pArgs->target;
2515 targetLimit=pArgs->targetLimit;
2516 offsets=pArgs->offsets;
2517
2518 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
2519 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2520 } else {
2521 stateTable=cnv->sharedData->mbcs.stateTable;
2522 }
2523 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2524
2525 /* get the converter state from UConverter */
2526 offset=cnv->toUnicodeStatus;
2527 byteIndex=cnv->toULength;
2528 bytes=cnv->toUBytes;
2529
2530 /*
2531 * if we are in the SBCS state for a DBCS-only converter,
2532 * then load the DBCS state from the MBCS data
2533 * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2534 */
2535 if((state=(uint8_t)(cnv->mode))==0) {
2536 state=cnv->sharedData->mbcs.dbcsOnlyState;
2537 }
2538
2539 /* sourceIndex=-1 if the current character began in the previous buffer */
2540 sourceIndex=byteIndex==0 ? 0 : -1;
2541 nextSourceIndex=0;
2542
2543 /* conversion loop */
2544 while(source<sourceLimit) {
2545 /*
2546 * This following test is to see if available input would overflow the output.
2547 * It does not catch output of more than one code unit that
2548 * overflows as a result of a surrogate pair or callback output
2549 * from the last source byte.
2550 * Therefore, those situations also test for overflows and will
2551 * then break the loop, too.
2552 */
2553 if(target>=targetLimit) {
2554 /* target is full */
2555 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2556 break;
2557 }
2558
2559 if(byteIndex==0) {
2560 /* optimized loop for 1/2-byte input and BMP output */
2561 if(offsets==NULL__null) {
2562 do {
2563 entry=stateTable[state][*source];
2564 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
2565 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24);
2566 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry)((entry)&0xffffff);
2567
2568 ++source;
2569 if( source<sourceLimit &&
2570 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source])((entry=stateTable[state][*source])<0) &&
2571 MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)==MBCS_STATE_VALID_16 &&
2572 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry)])<0xfffe
2573 ) {
2574 ++source;
2575 *target++=c;
2576 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f); /* typically 0 */
2577 offset=0;
2578 } else {
2579 /* set the state and leave the optimized loop */
2580 bytes[0]=*(source-1);
2581 byteIndex=1;
2582 break;
2583 }
2584 } else {
2585 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)((entry)<(int32_t)0x80100000)) {
2586 /* output BMP code point */
2587 ++source;
2588 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2589 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f); /* typically 0 */
2590 } else {
2591 /* leave the optimized loop */
2592 break;
2593 }
2594 }
2595 } while(source<sourceLimit && target<targetLimit);
2596 } else /* offsets!=NULL */ {
2597 do {
2598 entry=stateTable[state][*source];
2599 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
2600 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24);
2601 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry)((entry)&0xffffff);
2602
2603 ++source;
2604 if( source<sourceLimit &&
2605 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source])((entry=stateTable[state][*source])<0) &&
2606 MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)==MBCS_STATE_VALID_16 &&
2607 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry)])<0xfffe
2608 ) {
2609 ++source;
2610 *target++=c;
2611 if(offsets!=NULL__null) {
2612 *offsets++=sourceIndex;
2613 sourceIndex=(nextSourceIndex+=2);
2614 }
2615 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f); /* typically 0 */
2616 offset=0;
2617 } else {
2618 /* set the state and leave the optimized loop */
2619 ++nextSourceIndex;
2620 bytes[0]=*(source-1);
2621 byteIndex=1;
2622 break;
2623 }
2624 } else {
2625 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)((entry)<(int32_t)0x80100000)) {
2626 /* output BMP code point */
2627 ++source;
2628 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2629 if(offsets!=NULL__null) {
2630 *offsets++=sourceIndex;
2631 sourceIndex=++nextSourceIndex;
2632 }
2633 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f); /* typically 0 */
2634 } else {
2635 /* leave the optimized loop */
2636 break;
2637 }
2638 }
2639 } while(source<sourceLimit && target<targetLimit);
2640 }
2641
2642 /*
2643 * these tests and break statements could be put inside the loop
2644 * if C had "break outerLoop" like Java
2645 */
2646 if(source>=sourceLimit) {
2647 break;
2648 }
2649 if(target>=targetLimit) {
2650 /* target is full */
2651 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2652 break;
2653 }
2654
2655 ++nextSourceIndex;
2656 bytes[byteIndex++]=*source++;
2657 } else /* byteIndex>0 */ {
2658 ++nextSourceIndex;
2659 entry=stateTable[state][bytes[byteIndex++]=*source++];
2660 }
2661
2662 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
2663 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24);
2664 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry)((entry)&0xffffff);
2665 continue;
2666 }
2667
2668 /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2669 cnv->mode=state;
2670
2671 /* set the next state early so that we can reuse the entry variable */
2672 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f); /* typically 0 */
2673
2674 /*
2675 * An if-else-if chain provides more reliable performance for
2676 * the most common cases compared to a switch.
2677 */
2678 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
2679 if(action==MBCS_STATE_VALID_16) {
2680 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2681 c=unicodeCodeUnits[offset];
2682 if(c<0xfffe) {
2683 /* output BMP code point */
2684 *target++=c;
2685 if(offsets!=NULL__null) {
2686 *offsets++=sourceIndex;
2687 }
2688 byteIndex=0;
2689 } else if(c==0xfffe) {
2690 if(UCNV_TO_U_USE_FALLBACK(cnv)true && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2691 /* output fallback BMP code point */
2692 *target++=(UChar)entry;
2693 if(offsets!=NULL__null) {
2694 *offsets++=sourceIndex;
2695 }
2696 byteIndex=0;
2697 }
2698 } else {
2699 /* callback(illegal) */
2700 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2701 }
2702 } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2703 /* output BMP code point */
2704 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2705 if(offsets!=NULL__null) {
2706 *offsets++=sourceIndex;
2707 }
2708 byteIndex=0;
2709 } else if(action==MBCS_STATE_VALID_16_PAIR) {
2710 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2711 c=unicodeCodeUnits[offset++];
2712 if(c<0xd800) {
2713 /* output BMP code point below 0xd800 */
2714 *target++=c;
2715 if(offsets!=NULL__null) {
2716 *offsets++=sourceIndex;
2717 }
2718 byteIndex=0;
2719 } else if(UCNV_TO_U_USE_FALLBACK(cnv)true ? c<=0xdfff : c<=0xdbff) {
2720 /* output roundtrip or fallback surrogate pair */
2721 *target++=(UChar)(c&0xdbff);
2722 if(offsets!=NULL__null) {
2723 *offsets++=sourceIndex;
2724 }
2725 byteIndex=0;
2726 if(target<targetLimit) {
2727 *target++=unicodeCodeUnits[offset];
2728 if(offsets!=NULL__null) {
2729 *offsets++=sourceIndex;
2730 }
2731 } else {
2732 /* target overflow */
2733 cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2734 cnv->UCharErrorBufferLength=1;
2735 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2736
2737 offset=0;
2738 break;
2739 }
2740 } else if(UCNV_TO_U_USE_FALLBACK(cnv)true ? (c&0xfffe)==0xe000 : c==0xe000) {
2741 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2742 *target++=unicodeCodeUnits[offset];
2743 if(offsets!=NULL__null) {
2744 *offsets++=sourceIndex;
2745 }
2746 byteIndex=0;
2747 } else if(c==0xffff) {
2748 /* callback(illegal) */
2749 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2750 }
2751 } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2752 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)true)
2753 ) {
2754 entry=MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff);
2755 /* output surrogate pair */
2756 *target++=(UChar)(0xd800|(UChar)(entry>>10));
2757 if(offsets!=NULL__null) {
2758 *offsets++=sourceIndex;
2759 }
2760 byteIndex=0;
2761 c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2762 if(target<targetLimit) {
2763 *target++=c;
2764 if(offsets!=NULL__null) {
2765 *offsets++=sourceIndex;
2766 }
2767 } else {
2768 /* target overflow */
2769 cnv->UCharErrorBuffer[0]=c;
2770 cnv->UCharErrorBufferLength=1;
2771 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2772
2773 offset=0;
2774 break;
2775 }
2776 } else if(action==MBCS_STATE_CHANGE_ONLY) {
2777 /*
2778 * This serves as a state change without any output.
2779 * It is useful for reading simple stateful encodings,
2780 * for example using just Shift-In/Shift-Out codes.
2781 * The 21 unused bits may later be used for more sophisticated
2782 * state transitions.
2783 */
2784 if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2785 byteIndex=0;
2786 } else {
2787 /* SI/SO are illegal for DBCS-only conversion */
2788 state=(uint8_t)(cnv->mode); /* restore the previous state */
2789
2790 /* callback(illegal) */
2791 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2792 }
2793 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2794 if(UCNV_TO_U_USE_FALLBACK(cnv)true) {
2795 /* output BMP code point */
2796 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2797 if(offsets!=NULL__null) {
2798 *offsets++=sourceIndex;
2799 }
2800 byteIndex=0;
2801 }
2802 } else if(action==MBCS_STATE_UNASSIGNED) {
2803 /* just fall through */
2804 } else if(action==MBCS_STATE_ILLEGAL) {
2805 /* callback(illegal) */
2806 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2807 } else {
2808 /* reserved, must never occur */
2809 byteIndex=0;
2810 }
2811
2812 /* end of action codes: prepare for a new character */
2813 offset=0;
2814
2815 if(byteIndex==0) {
2816 sourceIndex=nextSourceIndex;
2817 } else if(U_FAILURE(*pErrorCode)) {
2818 /* callback(illegal) */
2819 if(byteIndex>1) {
2820 /*
2821 * Ticket 5691: consistent illegal sequences:
2822 * - We include at least the first byte in the illegal sequence.
2823 * - If any of the non-initial bytes could be the start of a character,
2824 * we stop the illegal sequence before the first one of those.
2825 */
2826 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2827 int8_t i;
2828 for(i=1;
2829 i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2830 ++i) {}
2831 if(i<byteIndex) {
2832 /* Back out some bytes. */
2833 int8_t backOutDistance=byteIndex-i;
2834 int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2835 byteIndex=i; /* length of reported illegal byte sequence */
2836 if(backOutDistance<=bytesFromThisBuffer) {
2837 source-=backOutDistance;
2838 } else {
2839 /* Back out bytes from the previous buffer: Need to replay them. */
2840 cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2841 /* preToULength is negative! */
2842 uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength)do { clang diagnostic push clang diagnostic ignored "-Waddress"
(void)0; (void)0; clang diagnostic pop :: memcpy(cnv->preToU
, bytes+i, -cnv->preToULength); } while (false)
;
2843 source=(const uint8_t *)pArgs->source;
2844 }
2845 }
2846 }
2847 break;
2848 } else /* unassigned sequences indicated with byteIndex>0 */ {
2849 /* try an extension mapping */
2850 pArgs->source=(const char *)source;
2851 byteIndex=_extToU(cnv, cnv->sharedData,
2852 byteIndex, &source, sourceLimit,
2853 &target, targetLimit,
2854 &offsets, sourceIndex,
2855 pArgs->flush,
2856 pErrorCode);
2857 sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2858
2859 if(U_FAILURE(*pErrorCode)) {
2860 /* not mappable or buffer overflow */
2861 break;
2862 }
2863 }
2864 }
2865
2866 /* set the converter state back into UConverter */
2867 cnv->toUnicodeStatus=offset;
2868 cnv->mode=state;
2869 cnv->toULength=byteIndex;
2870
2871 /* write back the updated pointers */
2872 pArgs->source=(const char *)source;
2873 pArgs->target=target;
2874 pArgs->offsets=offsets;
2875}
2876
2877/*
2878 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2879 * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2880 */
2881static UChar32
2882ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2883 UErrorCode *pErrorCode) {
2884 UConverter *cnv;
2885 const int32_t (*stateTable)[256];
2886 const uint8_t *source, *sourceLimit;
2887
2888 int32_t entry;
2889 uint8_t action;
2890
2891 /* set up the local pointers */
2892 cnv=pArgs->converter;
2893 source=(const uint8_t *)pArgs->source;
2894 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2895 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
2896 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2897 } else {
2898 stateTable=cnv->sharedData->mbcs.stateTable;
2899 }
2900
2901 /* conversion loop */
2902 while(source<sourceLimit) {
2903 entry=stateTable[0][*source++];
2904 /* MBCS_ENTRY_IS_FINAL(entry) */
2905
2906 /* write back the updated pointer early so that we can return directly */
2907 pArgs->source=(const char *)source;
2908
2909 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)((entry)<(int32_t)0x80100000)) {
2910 /* output BMP code point */
2911 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2912 }
2913
2914 /*
2915 * An if-else-if chain provides more reliable performance for
2916 * the most common cases compared to a switch.
2917 */
2918 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
2919 if( action==MBCS_STATE_VALID_DIRECT_20 ||
2920 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)true)
2921 ) {
2922 /* output supplementary code point */
2923 return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff)+0x10000);
2924 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2925 if(UCNV_TO_U_USE_FALLBACK(cnv)true) {
2926 /* output BMP code point */
2927 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
2928 }
2929 } else if(action==MBCS_STATE_UNASSIGNED) {
2930 /* just fall through */
2931 } else if(action==MBCS_STATE_ILLEGAL) {
2932 /* callback(illegal) */
2933 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2934 } else {
2935 /* reserved, must never occur */
2936 continue;
2937 }
2938
2939 if(U_FAILURE(*pErrorCode)) {
2940 /* callback(illegal) */
2941 break;
2942 } else /* unassigned sequence */ {
2943 /* defer to the generic implementation */
2944 pArgs->source=(const char *)source-1;
2945 return UCNV_GET_NEXT_UCHAR_USE_TO_U-9;
2946 }
2947 }
2948
2949 /* no output because of empty input or only state changes */
2950 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2951 return 0xffff;
2952}
2953
2954/*
2955 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2956 * conversion without offset handling.
2957 *
2958 * When a character does not have a mapping to Unicode, then we return to the
2959 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2960 * handling.
2961 * We also defer to the generic code in other complicated cases and have them
2962 * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2963 *
2964 * All normal mappings and errors are handled here.
2965 */
2966static UChar32 U_CALLCONV
2967ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2968 UErrorCode *pErrorCode) {
2969 UConverter *cnv;
2970 const uint8_t *source, *sourceLimit, *lastSource;
2971
2972 const int32_t (*stateTable)[256];
2973 const uint16_t *unicodeCodeUnits;
2974
2975 uint32_t offset;
2976 uint8_t state;
2977
2978 int32_t entry;
2979 UChar32 c;
2980 uint8_t action;
2981
2982 /* use optimized function if possible */
2983 cnv=pArgs->converter;
2984
2985 if(cnv->preToULength>0) {
2986 /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2987 return UCNV_GET_NEXT_UCHAR_USE_TO_U-9;
2988 }
2989
2990 if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES2) {
2991 /*
2992 * Using the generic ucnv_getNextUChar() code lets us deal correctly
2993 * with the rare case of a codepage that maps single surrogates
2994 * without adding the complexity to this already complicated function here.
2995 */
2996 return UCNV_GET_NEXT_UCHAR_USE_TO_U-9;
2997 } else if(cnv->sharedData->mbcs.countStates==1) {
2998 return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2999 }
3000
3001 /* set up the local pointers */
3002 source=lastSource=(const uint8_t *)pArgs->source;
3003 sourceLimit=(const uint8_t *)pArgs->sourceLimit;
3004
3005 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
3006 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
3007 } else {
3008 stateTable=cnv->sharedData->mbcs.stateTable;
3009 }
3010 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
3011
3012 /* get the converter state from UConverter */
3013 offset=cnv->toUnicodeStatus;
3014
3015 /*
3016 * if we are in the SBCS state for a DBCS-only converter,
3017 * then load the DBCS state from the MBCS data
3018 * (dbcsOnlyState==0 if it is not a DBCS-only converter)
3019 */
3020 if((state=(uint8_t)(cnv->mode))==0) {
3021 state=cnv->sharedData->mbcs.dbcsOnlyState;
3022 }
3023
3024 /* conversion loop */
3025 c=U_SENTINEL(-1);
3026 while(source<sourceLimit) {
3027 entry=stateTable[state][*source++];
3028 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
3029 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24);
3030 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry)((entry)&0xffffff);
3031
3032 /* optimization for 1/2-byte input and BMP output */
3033 if( source<sourceLimit &&
3034 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source])((entry=stateTable[state][*source])<0) &&
3035 MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf)==MBCS_STATE_VALID_16 &&
3036 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry)])<0xfffe
3037 ) {
3038 ++source;
3039 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f); /* typically 0 */
3040 /* output BMP code point */
3041 break;
3042 }
3043 } else {
3044 /* save the previous state for proper extension mapping with SI/SO-stateful converters */
3045 cnv->mode=state;
3046
3047 /* set the next state early so that we can reuse the entry variable */
3048 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry)((((uint32_t)entry)>>24)&0x7f); /* typically 0 */
3049
3050 /*
3051 * An if-else-if chain provides more reliable performance for
3052 * the most common cases compared to a switch.
3053 */
3054 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
3055 if(action==MBCS_STATE_VALID_DIRECT_16) {
3056 /* output BMP code point */
3057 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3058 break;
3059 } else if(action==MBCS_STATE_VALID_16) {
3060 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3061 c=unicodeCodeUnits[offset];
3062 if(c<0xfffe) {
3063 /* output BMP code point */
3064 break;
3065 } else if(c==0xfffe) {
3066 if(UCNV_TO_U_USE_FALLBACK(cnv)true && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
3067 break;
3068 }
3069 } else {
3070 /* callback(illegal) */
3071 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3072 }
3073 } else if(action==MBCS_STATE_VALID_16_PAIR) {
3074 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3075 c=unicodeCodeUnits[offset++];
3076 if(c<0xd800) {
3077 /* output BMP code point below 0xd800 */
3078 break;
3079 } else if(UCNV_TO_U_USE_FALLBACK(cnv)true ? c<=0xdfff : c<=0xdbff) {
3080 /* output roundtrip or fallback supplementary code point */
3081 c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
3082 break;
3083 } else if(UCNV_TO_U_USE_FALLBACK(cnv)true ? (c&0xfffe)==0xe000 : c==0xe000) {
3084 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3085 c=unicodeCodeUnits[offset];
3086 break;
3087 } else if(c==0xffff) {
3088 /* callback(illegal) */
3089 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3090 }
3091 } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
3092 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)true)
3093 ) {
3094 /* output supplementary code point */
3095 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff)+0x10000);
3096 break;
3097 } else if(action==MBCS_STATE_CHANGE_ONLY) {
3098 /*
3099 * This serves as a state change without any output.
3100 * It is useful for reading simple stateful encodings,
3101 * for example using just Shift-In/Shift-Out codes.
3102 * The 21 unused bits may later be used for more sophisticated
3103 * state transitions.
3104 */
3105 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
3106 /* SI/SO are illegal for DBCS-only conversion */
3107 state=(uint8_t)(cnv->mode); /* restore the previous state */
3108
3109 /* callback(illegal) */
3110 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3111 }
3112 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3113 if(UCNV_TO_U_USE_FALLBACK(cnv)true) {
3114 /* output BMP code point */
3115 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3116 break;
3117 }
3118 } else if(action==MBCS_STATE_UNASSIGNED) {
3119 /* just fall through */
3120 } else if(action==MBCS_STATE_ILLEGAL) {
3121 /* callback(illegal) */
3122 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3123 } else {
3124 /* reserved (must never occur), or only state change */
3125 offset=0;
3126 lastSource=source;
3127 continue;
3128 }
3129
3130 /* end of action codes: prepare for a new character */
3131 offset=0;
3132
3133 if(U_FAILURE(*pErrorCode)) {
3134 /* callback(illegal) */
3135 break;
3136 } else /* unassigned sequence */ {
3137 /* defer to the generic implementation */
3138 cnv->toUnicodeStatus=0;
3139 cnv->mode=state;
3140 pArgs->source=(const char *)lastSource;
3141 return UCNV_GET_NEXT_UCHAR_USE_TO_U-9;
3142 }
3143 }
3144 }
3145
3146 if(c<0) {
3147 if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3148 /* incomplete character byte sequence */
3149 uint8_t *bytes=cnv->toUBytes;
3150 cnv->toULength=(int8_t)(source-lastSource);
3151 do {
3152 *bytes++=*lastSource++;
3153 } while(lastSource<source);
3154 *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3155 } else if(U_FAILURE(*pErrorCode)) {
3156 /* callback(illegal) */
3157 /*
3158 * Ticket 5691: consistent illegal sequences:
3159 * - We include at least the first byte in the illegal sequence.
3160 * - If any of the non-initial bytes could be the start of a character,
3161 * we stop the illegal sequence before the first one of those.
3162 */
3163 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3164 uint8_t *bytes=cnv->toUBytes;
3165 *bytes++=*lastSource++; /* first byte */
3166 if(lastSource==source) {
3167 cnv->toULength=1;
3168 } else /* lastSource<source: multi-byte character */ {
3169 int8_t i;
3170 for(i=1;
3171 lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3172 ++i
3173 ) {
3174 *bytes++=*lastSource++;
3175 }
3176 cnv->toULength=i;
3177 source=lastSource;
3178 }
3179 } else {
3180 /* no output because of empty input or only state changes */
3181 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3182 }
3183 c=0xffff;
3184 }
3185
3186 /* set the converter state back into UConverter, ready for a new character */
3187 cnv->toUnicodeStatus=0;
3188 cnv->mode=state;
3189
3190 /* write back the updated pointer */
3191 pArgs->source=(const char *)source;
3192 return c;
3193}
3194
3195#if 0
3196/*
3197 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3198 * Removal improves code coverage.
3199 */
3200/**
3201 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3202 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3203 * It does not handle conversion extensions (_extToU()).
3204 */
3205U_CFUNCextern "C" UChar32
3206ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3207 uint8_t b, UBool useFallback) {
3208 int32_t entry;
3209 uint8_t action;
3210
3211 entry=sharedData->mbcs.stateTable[0][b];
3212 /* MBCS_ENTRY_IS_FINAL(entry) */
3213
3214 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)((entry)<(int32_t)0x80100000)) {
3215 /* output BMP code point */
3216 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3217 }
3218
3219 /*
3220 * An if-else-if chain provides more reliable performance for
3221 * the most common cases compared to a switch.
3222 */
3223 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
3224 if(action==MBCS_STATE_VALID_DIRECT_20) {
3225 /* output supplementary code point */
3226 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff);
3227 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3228 if(!TO_U_USE_FALLBACK(useFallback)true) {
3229 return 0xfffe;
3230 }
3231 /* output BMP code point */
3232 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3233 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3234 if(!TO_U_USE_FALLBACK(useFallback)true) {
3235 return 0xfffe;
3236 }
3237 /* output supplementary code point */
3238 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff);
3239 } else if(action==MBCS_STATE_UNASSIGNED) {
3240 return 0xfffe;
3241 } else if(action==MBCS_STATE_ILLEGAL) {
3242 return 0xffff;
3243 } else {
3244 /* reserved, must never occur */
3245 return 0xffff;
3246 }
3247}
3248#endif
3249
3250/*
3251 * This is a simple version of _MBCSGetNextUChar() that is used
3252 * by other converter implementations.
3253 * It only returns an "assigned" result if it consumes the entire input.
3254 * It does not use state from the converter, nor error codes.
3255 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3256 * It handles conversion extensions but not GB 18030.
3257 *
3258 * Return value:
3259 * U+fffe unassigned
3260 * U+ffff illegal
3261 * otherwise the Unicode code point
3262 */
3263U_CFUNCextern "C" UChar32
3264ucnv_MBCSSimpleGetNextUCharucnv_MBCSSimpleGetNextUChar_71(UConverterSharedData *sharedData,
3265 const char *source, int32_t length,
3266 UBool useFallback) {
3267 const int32_t (*stateTable)[256];
3268 const uint16_t *unicodeCodeUnits;
3269
3270 uint32_t offset;
3271 uint8_t state, action;
3272
3273 UChar32 c;
3274 int32_t i, entry;
3275
3276 if(length<=0) {
3277 /* no input at all: "illegal" */
3278 return 0xffff;
3279 }
3280
3281#if 0
3282/*
3283 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3284 * TODO In future releases, verify that this function is never called for SBCS
3285 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3286 * Removal improves code coverage.
3287 */
3288 /* use optimized function if possible */
3289 if(sharedData->mbcs.countStates==1) {
3290 if(length==1) {
3291 return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3292 } else {
3293 return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3294 }
3295 }
3296#endif
3297
3298 /* set up the local pointers */
3299 stateTable=sharedData->mbcs.stateTable;
3300 unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3301
3302 /* converter state */
3303 offset=0;
3304 state=sharedData->mbcs.dbcsOnlyState;
3305
3306 /* conversion loop */
3307 for(i=0;;) {
3308 entry=stateTable[state][(uint8_t)source[i++]];
3309 if(MBCS_ENTRY_IS_TRANSITION(entry)((entry)>=0)) {
3310 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)(((uint32_t)entry)>>24);
3311 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry)((entry)&0xffffff);
3312
3313 if(i==length) {
3314 return 0xffff; /* truncated character */
3315 }
3316 } else {
3317 /*
3318 * An if-else-if chain provides more reliable performance for
3319 * the most common cases compared to a switch.
3320 */
3321 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)((((uint32_t)entry)>>20)&0xf));
3322 if(action==MBCS_STATE_VALID_16) {
3323 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3324 c=unicodeCodeUnits[offset];
3325 if(c!=0xfffe) {
3326 /* done */
3327 } else if(UCNV_TO_U_USE_FALLBACK(cnv)true) {
3328 c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3329 /* else done with 0xfffe */
3330 }
3331 break;
3332 } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3333 /* output BMP code point */
3334 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3335 break;
3336 } else if(action==MBCS_STATE_VALID_16_PAIR) {
3337 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3338 c=unicodeCodeUnits[offset++];
3339 if(c<0xd800) {
3340 /* output BMP code point below 0xd800 */
3341 } else if(UCNV_TO_U_USE_FALLBACK(cnv)true ? c<=0xdfff : c<=0xdbff) {
3342 /* output roundtrip or fallback supplementary code point */
3343 c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3344 } else if(UCNV_TO_U_USE_FALLBACK(cnv)true ? (c&0xfffe)==0xe000 : c==0xe000) {
3345 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3346 c=unicodeCodeUnits[offset];
3347 } else if(c==0xffff) {
3348 return 0xffff;
3349 } else {
3350 c=0xfffe;
3351 }
3352 break;
3353 } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3354 /* output supplementary code point */
3355 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff);
3356 break;
3357 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3358 if(!TO_U_USE_FALLBACK(useFallback)true) {
3359 c=0xfffe;
3360 break;
3361 }
3362 /* output BMP code point */
3363 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry)(uint16_t)(entry);
3364 break;
3365 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3366 if(!TO_U_USE_FALLBACK(useFallback)true) {
3367 c=0xfffe;
3368 break;
3369 }
3370 /* output supplementary code point */
3371 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry)((entry)&0xfffff);
3372 break;
3373 } else if(action==MBCS_STATE_UNASSIGNED) {
3374 c=0xfffe;
3375 break;
3376 }
3377
3378 /*
3379 * forbid MBCS_STATE_CHANGE_ONLY for this function,
3380 * and MBCS_STATE_ILLEGAL and reserved action codes
3381 */
3382 return 0xffff;
3383 }
3384 }
3385
3386 if(i!=length) {
3387 /* illegal for this function: not all input consumed */
3388 return 0xffff;
3389 }
3390
3391 if(c==0xfffe) {
3392 /* try an extension mapping */
3393 const int32_t *cx=sharedData->mbcs.extIndexes;
3394 if(cx!=NULL__null) {
3395 return ucnv_extSimpleMatchToUucnv_extSimpleMatchToU_71(cx, source, length, useFallback);
3396 }
3397 }
3398
3399 return c;
3400}
3401
3402/* MBCS-from-Unicode conversion functions ----------------------------------- */
3403
3404/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3405static void
3406ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3407 UErrorCode *pErrorCode) {
3408 UConverter *cnv;
3409 const UChar *source, *sourceLimit;
3410 uint8_t *target;
3411 int32_t targetCapacity;
3412 int32_t *offsets;
3413
3414 const uint16_t *table;
3415 const uint16_t *mbcsIndex;
3416 const uint8_t *bytes;
3417
3418 UChar32 c;
3419
3420 int32_t sourceIndex, nextSourceIndex;
3421
3422 uint32_t stage2Entry;
3423 uint32_t asciiRoundtrips;
3424 uint32_t value;
3425 uint8_t unicodeMask;
3426
3427 /* use optimized function if possible */
3428 cnv=pArgs->converter;
3429 unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3430
3431 /* set up the local pointers */
3432 source=pArgs->source;
3433 sourceLimit=pArgs->sourceLimit;
3434 target=(uint8_t *)pArgs->target;
3435 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3436 offsets=pArgs->offsets;
3437
3438 table=cnv->sharedData->mbcs.fromUnicodeTable;
3439 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3440 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
3441 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3442 } else {
3443 bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3444 }
3445 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3446
3447 /* get the converter state from UConverter */
3448 c=cnv->fromUChar32;
3449
3450 /* sourceIndex=-1 if the current character began in the previous buffer */
3451 sourceIndex= c==0 ? 0 : -1;
3452 nextSourceIndex=0;
3453
3454 /* conversion loop */
3455 if(c!=0 && targetCapacity>0) {
3456 goto getTrail;
3457 }
3458
3459 while(source<sourceLimit) {
3460 /*
3461 * This following test is to see if available input would overflow the output.
3462 * It does not catch output of more than one byte that
3463 * overflows as a result of a multi-byte character or callback output
3464 * from the last source character.
3465 * Therefore, those situations also test for overflows and will
3466 * then break the loop, too.
3467 */
3468 if(targetCapacity>0) {
3469 /*
3470 * Get a correct Unicode code point:
3471 * a single UChar for a BMP code point or
3472 * a matched surrogate pair for a "supplementary code point".
3473 */
3474 c=*source++;
3475 ++nextSourceIndex;
3476 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)(((asciiRoundtrips) & (1<<((c)>>2)))!=0)) {
3477 *target++=(uint8_t)c;
3478 if(offsets!=NULL__null) {
3479 *offsets++=sourceIndex;
3480 sourceIndex=nextSourceIndex;
3481 }
3482 --targetCapacity;
3483 c=0;
3484 continue;
3485 }
3486 /*
3487 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3488 * to avoid dealing with surrogates.
3489 * MBCS_FAST_MAX must be >=0xd7ff.
3490 */
3491 if(c<=0xd7ff) {
3492 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c)((const uint16_t *)bytes)[ (mbcsIndex)[(c)>>6] +((c)&
0x3f) ]
;
3493 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3494 if(value==0) {
3495 goto unassigned;
3496 }
3497 /* output the value */
3498 } else {
3499 /*
3500 * This also tests if the codepage maps single surrogates.
3501 * If it does, then surrogates are not paired but mapped separately.
3502 * Note that in this case unmatched surrogates are not detected.
3503 */
3504 if(U16_IS_SURROGATE(c)(((c)&0xfffff800)==0xd800) && !(unicodeMask&UCNV_HAS_SURROGATES2)) {
3505 if(U16_IS_SURROGATE_LEAD(c)(((c)&0x400)==0)) {
3506getTrail:
3507 if(source<sourceLimit) {
3508 /* test the following code unit */
3509 UChar trail=*source;
3510 if(U16_IS_TRAIL(trail)(((trail)&0xfffffc00)==0xdc00)) {
3511 ++source;
3512 ++nextSourceIndex;
3513 c=U16_GET_SUPPLEMENTARY(c, trail)(((UChar32)(c)<<10UL)+(UChar32)(trail)-((0xd800<<
10UL)+0xdc00-0x10000))
;
3514 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY1)) {
3515 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3516 /* callback(unassigned) */
3517 goto unassigned;
3518 }
3519 /* convert this supplementary code point */
3520 /* exit this condition tree */
3521 } else {
3522 /* this is an unmatched lead code unit (1st surrogate) */
3523 /* callback(illegal) */
3524 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3525 break;
3526 }
3527 } else {
3528 /* no more input */
3529 break;
3530 }
3531 } else {
3532 /* this is an unmatched trail code unit (2nd surrogate) */
3533 /* callback(illegal) */
3534 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3535 break;
3536 }
3537 }
3538
3539 /* convert the Unicode code point in c into codepage bytes */
3540 stage2Entry=MBCS_STAGE_2_FROM_U(table, c)((const uint32_t *)(table))[ (table)[(c)>>10] +(((c)>>
4)&0x3f) ]
;
3541
3542 /* get the bytes and the length for the output */
3543 /* MBCS_OUTPUT_2 */
3544 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c)((uint16_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
c)&0xf)]
;
3545
3546 /* is this code point assigned, or do we use fallbacks? */
3547 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)( ((stage2Entry) & ((uint32_t)1<< (16+((c)&0xf)
) )) !=0)
||
3548 (UCNV_FROM_U_USE_FALLBACK(cnv, c)(((cnv)->useFallback) || ((uint32_t)((c)-0xe000)<0x1900
|| (uint32_t)((c)-0xf0000)<0x20000))
&& value!=0))
3549 ) {
3550 /*
3551 * We allow a 0 byte output if the "assigned" bit is set for this entry.
3552 * There is no way with this data structure for fallback output
3553 * to be a zero byte.
3554 */
3555
3556unassigned:
3557 /* try an extension mapping */
3558 pArgs->source=source;
3559 c=_extFromU(cnv, cnv->sharedData,
3560 c, &source, sourceLimit,
3561 &target, target+targetCapacity,
3562 &offsets, sourceIndex,
3563 pArgs->flush,
3564 pErrorCode);
3565 nextSourceIndex+=(int32_t)(source-pArgs->source);
3566
3567 if(U_FAILURE(*pErrorCode)) {
3568 /* not mappable or buffer overflow */
3569 break;
3570 } else {
3571 /* a mapping was written to the target, continue */
3572
3573 /* recalculate the targetCapacity after an extension mapping */
3574 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3575
3576 /* normal end of conversion: prepare for a new character */
3577 sourceIndex=nextSourceIndex;
3578 continue;
3579 }
3580 }
3581 }
3582
3583 /* write the output character bytes from value and length */
3584 /* from the first if in the loop we know that targetCapacity>0 */
3585 if(value<=0xff) {
3586 /* this is easy because we know that there is enough space */
3587 *target++=(uint8_t)value;
3588 if(offsets!=NULL__null) {
3589 *offsets++=sourceIndex;
3590 }
3591 --targetCapacity;
3592 } else /* length==2 */ {
3593 *target++=(uint8_t)(value>>8);
3594 if(2<=targetCapacity) {
3595 *target++=(uint8_t)value;
3596 if(offsets!=NULL__null) {
3597 *offsets++=sourceIndex;
3598 *offsets++=sourceIndex;
3599 }
3600 targetCapacity-=2;
3601 } else {
3602 if(offsets!=NULL__null) {
3603 *offsets++=sourceIndex;
3604 }
3605 cnv->charErrorBuffer[0]=(char)value;
3606 cnv->charErrorBufferLength=1;
3607
3608 /* target overflow */
3609 targetCapacity=0;
Value stored to 'targetCapacity' is never read
3610 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3611 c=0;
3612 break;
3613 }
3614 }
3615
3616 /* normal end of conversion: prepare for a new character */
3617 c=0;
3618 sourceIndex=nextSourceIndex;
3619 continue;
3620 } else {
3621 /* target is full */
3622 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3623 break;
3624 }
3625 }
3626
3627 /* set the converter state back into UConverter */
3628 cnv->fromUChar32=c;
3629
3630 /* write back the updated pointers */
3631 pArgs->source=source;
3632 pArgs->target=(char *)target;
3633 pArgs->offsets=offsets;
3634}
3635
3636/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3637static void
3638ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3639 UErrorCode *pErrorCode) {
3640 UConverter *cnv;
3641 const UChar *source, *sourceLimit;
3642 uint8_t *target;
3643 int32_t targetCapacity;
3644 int32_t *offsets;
3645
3646 const uint16_t *table;
3647 const uint16_t *results;
3648
3649 UChar32 c;
3650
3651 int32_t sourceIndex, nextSourceIndex;
3652
3653 uint16_t value, minValue;
3654 UBool hasSupplementary;
3655
3656 /* set up the local pointers */
3657 cnv=pArgs->converter;
3658 source=pArgs->source;
3659 sourceLimit=pArgs->sourceLimit;
3660 target=(uint8_t *)pArgs->target;
3661 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3662 offsets=pArgs->offsets;
3663
3664 table=cnv->sharedData->mbcs.fromUnicodeTable;
3665 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
3666 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3667 } else {
3668 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3669 }
3670
3671 if(cnv->useFallback) {
3672 /* use all roundtrip and fallback results */
3673 minValue=0x800;
3674 } else {
3675 /* use only roundtrips and fallbacks from private-use characters */
3676 minValue=0xc00;
3677 }
3678 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY1);
3679
3680 /* get the converter state from UConverter */
3681 c=cnv->fromUChar32;
3682
3683 /* sourceIndex=-1 if the current character began in the previous buffer */
3684 sourceIndex= c==0 ? 0 : -1;
3685 nextSourceIndex=0;
3686
3687 /* conversion loop */
3688 if(c!=0 && targetCapacity>0) {
3689 goto getTrail;
3690 }
3691
3692 while(source<sourceLimit) {
3693 /*
3694 * This following test is to see if available input would overflow the output.
3695 * It does not catch output of more than one byte that
3696 * overflows as a result of a multi-byte character or callback output
3697 * from the last source character.
3698 * Therefore, those situations also test for overflows and will
3699 * then break the loop, too.
3700 */
3701 if(targetCapacity>0) {
3702 /*
3703 * Get a correct Unicode code point:
3704 * a single UChar for a BMP code point or
3705 * a matched surrogate pair for a "supplementary code point".
3706 */
3707 c=*source++;
3708 ++nextSourceIndex;
3709 if(U16_IS_SURROGATE(c)(((c)&0xfffff800)==0xd800)) {
3710 if(U16_IS_SURROGATE_LEAD(c)(((c)&0x400)==0)) {
3711getTrail:
3712 if(source<sourceLimit) {
3713 /* test the following code unit */
3714 UChar trail=*source;
3715 if(U16_IS_TRAIL(trail)(((trail)&0xfffffc00)==0xdc00)) {
3716 ++source;
3717 ++nextSourceIndex;
3718 c=U16_GET_SUPPLEMENTARY(c, trail)(((UChar32)(c)<<10UL)+(UChar32)(trail)-((0xd800<<
10UL)+0xdc00-0x10000))
;
3719 if(!hasSupplementary) {
3720 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3721 /* callback(unassigned) */
3722 goto unassigned;
3723 }
3724 /* convert this supplementary code point */
3725 /* exit this condition tree */
3726 } else {
3727 /* this is an unmatched lead code unit (1st surrogate) */
3728 /* callback(illegal) */
3729 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3730 break;
3731 }
3732 } else {
3733 /* no more input */
3734 break;
3735 }
3736 } else {
3737 /* this is an unmatched trail code unit (2nd surrogate) */
3738 /* callback(illegal) */
3739 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3740 break;
3741 }
3742 }
3743
3744 /* convert the Unicode code point in c into codepage bytes */
3745 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
3746
3747 /* is this code point assigned, or do we use fallbacks? */
3748 if(value>=minValue) {
3749 /* assigned, write the output character bytes from value and length */
3750 /* length==1 */
3751 /* this is easy because we know that there is enough space */
3752 *target++=(uint8_t)value;
3753 if(offsets!=NULL__null) {
3754 *offsets++=sourceIndex;
3755 }
3756 --targetCapacity;
3757
3758 /* normal end of conversion: prepare for a new character */
3759 c=0;
3760 sourceIndex=nextSourceIndex;
3761 } else { /* unassigned */
3762unassigned:
3763 /* try an extension mapping */
3764 pArgs->source=source;
3765 c=_extFromU(cnv, cnv->sharedData,
3766 c, &source, sourceLimit,
3767 &target, target+targetCapacity,
3768 &offsets, sourceIndex,
3769 pArgs->flush,
3770 pErrorCode);
3771 nextSourceIndex+=(int32_t)(source-pArgs->source);
3772
3773 if(U_FAILURE(*pErrorCode)) {
3774 /* not mappable or buffer overflow */
3775 break;
3776 } else {
3777 /* a mapping was written to the target, continue */
3778
3779 /* recalculate the targetCapacity after an extension mapping */
3780 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3781
3782 /* normal end of conversion: prepare for a new character */
3783 sourceIndex=nextSourceIndex;
3784 }
3785 }
3786 } else {
3787 /* target is full */
3788 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3789 break;
3790 }
3791 }
3792
3793 /* set the converter state back into UConverter */
3794 cnv->fromUChar32=c;
3795
3796 /* write back the updated pointers */
3797 pArgs->source=source;
3798 pArgs->target=(char *)target;
3799 pArgs->offsets=offsets;
3800}
3801
3802/*
3803 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3804 * that map only to and from the BMP.
3805 * In addition to single-byte/state optimizations, the offset calculations
3806 * become much easier.
3807 * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3808 * but measurements have shown that this diminishes performance
3809 * in more cases than it improves it.
3810 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3811 * for various MBCS and SBCS optimizations.
3812 */
3813static void
3814ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3815 UErrorCode *pErrorCode) {
3816 UConverter *cnv;
3817 const UChar *source, *sourceLimit, *lastSource;
3818 uint8_t *target;
3819 int32_t targetCapacity, length;
3820 int32_t *offsets;
3821
3822 const uint16_t *table;
3823 const uint16_t *results;
3824
3825 UChar32 c;
3826
3827 int32_t sourceIndex;
3828
3829 uint32_t asciiRoundtrips;
3830 uint16_t value, minValue;
3831
3832 /* set up the local pointers */
3833 cnv=pArgs->converter;
3834 source=pArgs->source;
3835 sourceLimit=pArgs->sourceLimit;
3836 target=(uint8_t *)pArgs->target;
3837 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3838 offsets=pArgs->offsets;
3839
3840 table=cnv->sharedData->mbcs.fromUnicodeTable;
3841 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
3842 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3843 } else {
3844 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3845 }
3846 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3847
3848 if(cnv->useFallback) {
3849 /* use all roundtrip and fallback results */
3850 minValue=0x800;
3851 } else {
3852 /* use only roundtrips and fallbacks from private-use characters */
3853 minValue=0xc00;
3854 }
3855
3856 /* get the converter state from UConverter */
3857 c=cnv->fromUChar32;
3858
3859 /* sourceIndex=-1 if the current character began in the previous buffer */
3860 sourceIndex= c==0 ? 0 : -1;
3861 lastSource=source;
3862
3863 /*
3864 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3865 * for the minimum of the sourceLength and targetCapacity
3866 */
3867 length=(int32_t)(sourceLimit-source);
3868 if(length<targetCapacity) {
3869 targetCapacity=length;
3870 }
3871
3872 /* conversion loop */
3873 if(c!=0 && targetCapacity>0) {
3874 goto getTrail;
3875 }
3876
3877#if MBCS_UNROLL_SINGLE_FROM_BMP0
3878 /* unrolling makes it slower on Pentium III/Windows 2000?! */
3879 /* unroll the loop with the most common case */
3880unrolled:
3881 if(targetCapacity>=4) {
3882 int32_t count, loops;
3883 uint16_t andedValues;
3884
3885 loops=count=targetCapacity>>2;
3886 do {
3887 c=*source++;
3888 andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
3889 *target++=(uint8_t)value;
3890 c=*source++;
3891 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
3892 *target++=(uint8_t)value;
3893 c=*source++;
3894 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
3895 *target++=(uint8_t)value;
3896 c=*source++;
3897 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
3898 *target++=(uint8_t)value;
3899
3900 /* were all 4 entries really valid? */
3901 if(andedValues<minValue) {
3902 /* no, return to the first of these 4 */
3903 source-=4;
3904 target-=4;
3905 break;
3906 }
3907 } while(--count>0);
3908 count=loops-count;
3909 targetCapacity-=4*count;
3910
3911 if(offsets!=NULL__null) {
3912 lastSource+=4*count;
3913 while(count>0) {
3914 *offsets++=sourceIndex++;
3915 *offsets++=sourceIndex++;
3916 *offsets++=sourceIndex++;
3917 *offsets++=sourceIndex++;
3918 --count;
3919 }
3920 }
3921
3922 c=0;
3923 }
3924#endif
3925
3926 while(targetCapacity>0) {
3927 /*
3928 * Get a correct Unicode code point:
3929 * a single UChar for a BMP code point or
3930 * a matched surrogate pair for a "supplementary code point".
3931 */
3932 c=*source++;
3933 /*
3934 * Do not immediately check for single surrogates:
3935 * Assume that they are unassigned and check for them in that case.
3936 * This speeds up the conversion of assigned characters.
3937 */
3938 /* convert the Unicode code point in c into codepage bytes */
3939 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)(((asciiRoundtrips) & (1<<((c)>>2)))!=0)) {
3940 *target++=(uint8_t)c;
3941 --targetCapacity;
3942 c=0;
3943 continue;
3944 }
3945 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
3946 /* is this code point assigned, or do we use fallbacks? */
3947 if(value>=minValue) {
3948 /* assigned, write the output character bytes from value and length */
3949 /* length==1 */
3950 /* this is easy because we know that there is enough space */
3951 *target++=(uint8_t)value;
3952 --targetCapacity;
3953
3954 /* normal end of conversion: prepare for a new character */
3955 c=0;
3956 continue;
3957 } else if(!U16_IS_SURROGATE(c)(((c)&0xfffff800)==0xd800)) {
3958 /* normal, unassigned BMP character */
3959 } else if(U16_IS_SURROGATE_LEAD(c)(((c)&0x400)==0)) {
3960getTrail:
3961 if(source<sourceLimit) {
3962 /* test the following code unit */
3963 UChar trail=*source;
3964 if(U16_IS_TRAIL(trail)(((trail)&0xfffffc00)==0xdc00)) {
3965 ++source;
3966 c=U16_GET_SUPPLEMENTARY(c, trail)(((UChar32)(c)<<10UL)+(UChar32)(trail)-((0xd800<<
10UL)+0xdc00-0x10000))
;
3967 /* this codepage does not map supplementary code points */
3968 /* callback(unassigned) */
3969 } else {
3970 /* this is an unmatched lead code unit (1st surrogate) */
3971 /* callback(illegal) */
3972 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3973 break;
3974 }
3975 } else {
3976 /* no more input */
3977 if (pArgs->flush) {
3978 *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3979 }
3980 break;
3981 }
3982 } else {
3983 /* this is an unmatched trail code unit (2nd surrogate) */
3984 /* callback(illegal) */
3985 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3986 break;
3987 }
3988
3989 /* c does not have a mapping */
3990
3991 /* get the number of code units for c to correctly advance sourceIndex */
3992 length=U16_LENGTH(c)((uint32_t)(c)<=0xffff ? 1 : 2);
3993
3994 /* set offsets since the start or the last extension */
3995 if(offsets!=NULL__null) {
3996 int32_t count=(int32_t)(source-lastSource);
3997
3998 /* do not set the offset for this character */
3999 count-=length;
4000
4001 while(count>0) {
4002 *offsets++=sourceIndex++;
4003 --count;
4004 }
4005 /* offsets and sourceIndex are now set for the current character */
4006 }
4007
4008 /* try an extension mapping */
4009 lastSource=source;
4010 c=_extFromU(cnv, cnv->sharedData,
4011 c, &source, sourceLimit,
4012 &target, (const uint8_t *)(pArgs->targetLimit),
4013 &offsets, sourceIndex,
4014 pArgs->flush,
4015 pErrorCode);
4016 sourceIndex+=length+(int32_t)(source-lastSource);
4017 lastSource=source;
4018
4019 if(U_FAILURE(*pErrorCode)) {
4020 /* not mappable or buffer overflow */
4021 break;
4022 } else {
4023 /* a mapping was written to the target, continue */
4024
4025 /* recalculate the targetCapacity after an extension mapping */
4026 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4027 length=(int32_t)(sourceLimit-source);
4028 if(length<targetCapacity) {
4029 targetCapacity=length;
4030 }
4031 }
4032
4033#if MBCS_UNROLL_SINGLE_FROM_BMP0
4034 /* unrolling makes it slower on Pentium III/Windows 2000?! */
4035 goto unrolled;
4036#endif
4037 }
4038
4039 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
4040 /* target is full */
4041 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4042 }
4043
4044 /* set offsets since the start or the last callback */
4045 if(offsets!=NULL__null) {
4046 size_t count=source-lastSource;
4047 if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
4048 /*
4049 Caller gave us a partial supplementary character,
4050 which this function couldn't convert in any case.
4051 The callback will handle the offset.
4052 */
4053 count--;
4054 }
4055 while(count>0) {
4056 *offsets++=sourceIndex++;
4057 --count;
4058 }
4059 }
4060
4061 /* set the converter state back into UConverter */
4062 cnv->fromUChar32=c;
4063
4064 /* write back the updated pointers */
4065 pArgs->source=source;
4066 pArgs->target=(char *)target;
4067 pArgs->offsets=offsets;
4068}
4069
4070U_CFUNCextern "C" void
4071ucnv_MBCSFromUnicodeWithOffsetsucnv_MBCSFromUnicodeWithOffsets_71(UConverterFromUnicodeArgs *pArgs,
4072 UErrorCode *pErrorCode) {
4073 UConverter *cnv;
4074 const UChar *source, *sourceLimit;
4075 uint8_t *target;
4076 int32_t targetCapacity;
4077 int32_t *offsets;
4078
4079 const uint16_t *table;
4080 const uint16_t *mbcsIndex;
4081 const uint8_t *p, *bytes;
4082 uint8_t outputType;
4083
4084 UChar32 c;
4085
4086 int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
4087
4088 uint32_t stage2Entry;
4089 uint32_t asciiRoundtrips;
4090 uint32_t value;
4091 /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
4092 uint8_t siBytes[2] = {0, 0};
4093 uint8_t soBytes[2] = {0, 0};
4094 uint8_t siLength, soLength;
4095 int32_t length = 0, prevLength;
4096 uint8_t unicodeMask;
4097
4098 cnv=pArgs->converter;
4099
4100 if(cnv->preFromUFirstCP>=0) {
4101 /*
4102 * pass sourceIndex=-1 because we continue from an earlier buffer
4103 * in the future, this may change with continuous offsets
4104 */
4105 ucnv_extContinueMatchFromUucnv_extContinueMatchFromU_71(cnv, pArgs, -1, pErrorCode);
4106
4107 if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
4108 return;
4109 }
4110 }
4111
4112 /* use optimized function if possible */
4113 outputType=cnv->sharedData->mbcs.outputType;
4114 unicodeMask=cnv->sharedData->mbcs.unicodeMask;
4115 if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES2)) {
4116 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY1)) {
4117 ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
4118 } else {
4119 ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
4120 }
4121 return;
4122 } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
4123 ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
4124 return;
4125 }
4126
4127 /* set up the local pointers */
4128 source=pArgs->source;
4129 sourceLimit=pArgs->sourceLimit;
4130 target=(uint8_t *)pArgs->target;
4131 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
4132 offsets=pArgs->offsets;
4133
4134 table=cnv->sharedData->mbcs.fromUnicodeTable;
4135 if(cnv->sharedData->mbcs.utf8Friendly) {
4136 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
4137 } else {
4138 mbcsIndex=NULL__null;
4139 }
4140 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
4141 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4142 } else {
4143 bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
4144 }
4145 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4146
4147 /* get the converter state from UConverter */
4148 c=cnv->fromUChar32;
4149
4150 if(outputType==MBCS_OUTPUT_2_SISO) {
4151 prevLength=cnv->fromUnicodeStatus;
4152 if(prevLength==0) {
4153 /* set the real value */
4154 prevLength=1;
4155 }
4156 } else {
4157 /* prevent fromUnicodeStatus from being set to something non-0 */
4158 prevLength=0;
4159 }
4160
4161 /* sourceIndex=-1 if the current character began in the previous buffer */
4162 prevSourceIndex=-1;
4163 sourceIndex= c==0 ? 0 : -1;
4164 nextSourceIndex=0;
4165
4166 /* Get the SI/SO character for the converter */
4167 siLength = static_cast<uint8_t>(getSISOBytes(SI, cnv->options, siBytes));
4168 soLength = static_cast<uint8_t>(getSISOBytes(SO, cnv->options, soBytes));
4169
4170 /* conversion loop */
4171 /*
4172 * This is another piece of ugly code:
4173 * A goto into the loop if the converter state contains a first surrogate
4174 * from the previous function call.
4175 * It saves me to check in each loop iteration a check of if(c==0)
4176 * and duplicating the trail-surrogate-handling code in the else
4177 * branch of that check.
4178 * I could not find any other way to get around this other than
4179 * using a function call for the conversion and callback, which would
4180 * be even more inefficient.
4181 *
4182 * Markus Scherer 2000-jul-19
4183 */
4184 if(c!=0 && targetCapacity>0) {
4185 goto getTrail;
4186 }
4187
4188 while(source<sourceLimit) {
4189 /*
4190 * This following test is to see if available input would overflow the output.
4191 * It does not catch output of more than one byte that
4192 * overflows as a result of a multi-byte character or callback output
4193 * from the last source character.
4194 * Therefore, those situations also test for overflows and will
4195 * then break the loop, too.
4196 */
4197 if(targetCapacity>0) {
4198 /*
4199 * Get a correct Unicode code point:
4200 * a single UChar for a BMP code point or
4201 * a matched surrogate pair for a "supplementary code point".
4202 */
4203 c=*source++;
4204 ++nextSourceIndex;
4205 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)(((asciiRoundtrips) & (1<<((c)>>2)))!=0)) {
4206 *target++=(uint8_t)c;
4207 if(offsets!=NULL__null) {
4208 *offsets++=sourceIndex;
4209 prevSourceIndex=sourceIndex;
4210 sourceIndex=nextSourceIndex;
4211 }
4212 --targetCapacity;
4213 c=0;
4214 continue;
4215 }
4216 /*
4217 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4218 * to avoid dealing with surrogates.
4219 * MBCS_FAST_MAX must be >=0xd7ff.
4220 */
4221 if(c<=0xd7ff && mbcsIndex!=NULL__null) {
4222 value=mbcsIndex[c>>6];
4223
4224 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4225 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4226 switch(outputType) {
4227 case MBCS_OUTPUT_2:
4228 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4229 if(value<=0xff) {
4230 if(value==0) {
4231 goto unassigned;
4232 } else {
4233 length=1;
4234 }
4235 } else {
4236 length=2;
4237 }
4238 break;
4239 case MBCS_OUTPUT_2_SISO:
4240 /* 1/2-byte stateful with Shift-In/Shift-Out */
4241 /*
4242 * Save the old state in the converter object
4243 * right here, then change the local prevLength state variable if necessary.
4244 * Then, if this character turns out to be unassigned or a fallback that
4245 * is not taken, the callback code must not save the new state in the converter
4246 * because the new state is for a character that is not output.
4247 * However, the callback must still restore the state from the converter
4248 * in case the callback function changed it for its output.
4249 */
4250 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4251 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4252 if(value<=0xff) {
4253 if(value==0) {
4254 goto unassigned;
4255 } else if(prevLength<=1) {
4256 length=1;
4257 } else {
4258 /* change from double-byte mode to single-byte */
4259 if (siLength == 1) {
4260 value|=(uint32_t)siBytes[0]<<8;
4261 length = 2;
4262 } else if (siLength == 2) {
4263 value|=(uint32_t)siBytes[1]<<8;
4264 value|=(uint32_t)siBytes[0]<<16;
4265 length = 3;
4266 }
4267 prevLength=1;
4268 }
4269 } else {
4270 if(prevLength==2) {
4271 length=2;
4272 } else {
4273 /* change from single-byte mode to double-byte */
4274 if (soLength == 1) {
4275 value|=(uint32_t)soBytes[0]<<16;
4276 length = 3;
4277 } else if (soLength == 2) {
4278 value|=(uint32_t)soBytes[1]<<16;
4279 value|=(uint32_t)soBytes[0]<<24;
4280 length = 4;
4281 }
4282 prevLength=2;
4283 }
4284 }
4285 break;
4286 case MBCS_OUTPUT_DBCS_ONLY:
4287 /* table with single-byte results, but only DBCS mappings used */
4288 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4289 if(value<=0xff) {
4290 /* no mapping or SBCS result, not taken for DBCS-only */
4291 goto unassigned;
4292 } else {
4293 length=2;
4294 }
4295 break;
4296 case MBCS_OUTPUT_3:
4297 p=bytes+(value+(c&0x3f))*3;
4298 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4299 if(value<=0xff) {
4300 if(value==0) {
4301 goto unassigned;
4302 } else {
4303 length=1;
4304 }
4305 } else if(value<=0xffff) {
4306 length=2;
4307 } else {
4308 length=3;
4309 }
4310 break;
4311 case MBCS_OUTPUT_4:
4312 value=((const uint32_t *)bytes)[value +(c&0x3f)];
4313 if(value<=0xff) {
4314 if(value==0) {
4315 goto unassigned;
4316 } else {
4317 length=1;
4318 }
4319 } else if(value<=0xffff) {
4320 length=2;
4321 } else if(value<=0xffffff) {
4322 length=3;
4323 } else {
4324 length=4;
4325 }
4326 break;
4327 case MBCS_OUTPUT_3_EUC:
4328 value=((const uint16_t *)bytes)[value +(c&0x3f)];
4329 /* EUC 16-bit fixed-length representation */
4330 if(value<=0xff) {
4331 if(value==0) {
4332 goto unassigned;
4333 } else {
4334 length=1;
4335 }
4336 } else if((value&0x8000)==0) {
4337 value|=0x8e8000;
4338 length=3;
4339 } else if((value&0x80)==0) {
4340 value|=0x8f0080;
4341 length=3;
4342 } else {
4343 length=2;
4344 }
4345 break;
4346 case MBCS_OUTPUT_4_EUC:
4347 p=bytes+(value+(c&0x3f))*3;
4348 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4349 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4350 if(value<=0xff) {
4351 if(value==0) {
4352 goto unassigned;
4353 } else {
4354 length=1;
4355 }
4356 } else if(value<=0xffff) {
4357 length=2;
4358 } else if((value&0x800000)==0) {
4359 value|=0x8e800000;
4360 length=4;
4361 } else if((value&0x8000)==0) {
4362 value|=0x8f008000;
4363 length=4;
4364 } else {
4365 length=3;
4366 }
4367 break;
4368 default:
4369 /* must not occur */
4370 /*
4371 * To avoid compiler warnings that value & length may be
4372 * used without having been initialized, we set them here.
4373 * In reality, this is unreachable code.
4374 * Not having a default branch also causes warnings with
4375 * some compilers.
4376 */
4377 value=0;
4378 length=0;
4379 break;
4380 }
4381 /* output the value */
4382 } else {
4383 /*
4384 * This also tests if the codepage maps single surrogates.
4385 * If it does, then surrogates are not paired but mapped separately.
4386 * Note that in this case unmatched surrogates are not detected.
4387 */
4388 if(U16_IS_SURROGATE(c)(((c)&0xfffff800)==0xd800) && !(unicodeMask&UCNV_HAS_SURROGATES2)) {
4389 if(U16_IS_SURROGATE_LEAD(c)(((c)&0x400)==0)) {
4390getTrail:
4391 if(source<sourceLimit) {
4392 /* test the following code unit */
4393 UChar trail=*source;
4394 if(U16_IS_TRAIL(trail)(((trail)&0xfffffc00)==0xdc00)) {
4395 ++source;
4396 ++nextSourceIndex;
4397 c=U16_GET_SUPPLEMENTARY(c, trail)(((UChar32)(c)<<10UL)+(UChar32)(trail)-((0xd800<<
10UL)+0xdc00-0x10000))
;
4398 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY1)) {
4399 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4400 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4401 /* callback(unassigned) */
4402 goto unassigned;
4403 }
4404 /* convert this supplementary code point */
4405 /* exit this condition tree */
4406 } else {
4407 /* this is an unmatched lead code unit (1st surrogate) */
4408 /* callback(illegal) */
4409 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4410 break;
4411 }
4412 } else {
4413 /* no more input */
4414 break;
4415 }
4416 } else {
4417 /* this is an unmatched trail code unit (2nd surrogate) */
4418 /* callback(illegal) */
4419 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4420 break;
4421 }
4422 }
4423
4424 /* convert the Unicode code point in c into codepage bytes */
4425
4426 /*
4427 * The basic lookup is a triple-stage compact array (trie) lookup.
4428 * For details see the beginning of this file.
4429 *
4430 * Single-byte codepages are handled with a different data structure
4431 * by _MBCSSingle... functions.
4432 *
4433 * The result consists of a 32-bit value from stage 2 and
4434 * a pointer to as many bytes as are stored per character.
4435 * The pointer points to the character's bytes in stage 3.
4436 * Bits 15..0 of the stage 2 entry contain the stage 3 index
4437 * for that pointer, while bits 31..16 are flags for which of
4438 * the 16 characters in the block are roundtrip-assigned.
4439 *
4440 * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4441 * respectively as uint32_t, in the platform encoding.
4442 * For 3-byte codepages, the bytes are always stored in big-endian order.
4443 *
4444 * For EUC encodings that use only either 0x8e or 0x8f as the first
4445 * byte of their longest byte sequences, the first two bytes in
4446 * this third stage indicate with their 7th bits whether these bytes
4447 * are to be written directly or actually need to be preceded by
4448 * one of the two Single-Shift codes. With this, the third stage
4449 * stores one byte fewer per character than the actual maximum length of
4450 * EUC byte sequences.
4451 *
4452 * Other than that, leading zero bytes are removed and the other
4453 * bytes output. A single zero byte may be output if the "assigned"
4454 * bit in stage 2 was on.
4455 * The data structure does not support zero byte output as a fallback,
4456 * and also does not allow output of leading zeros.
4457 */
4458 stage2Entry=MBCS_STAGE_2_FROM_U(table, c)((const uint32_t *)(table))[ (table)[(c)>>10] +(((c)>>
4)&0x3f) ]
;
4459
4460 /* get the bytes and the length for the output */
4461 switch(outputType) {
4462 case MBCS_OUTPUT_2:
4463 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c)((uint16_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
c)&0xf)]
;
4464 if(value<=0xff) {
4465 length=1;
4466 } else {
4467 length=2;
4468 }
4469 break;
4470 case MBCS_OUTPUT_2_SISO:
4471 /* 1/2-byte stateful with Shift-In/Shift-Out */
4472 /*
4473 * Save the old state in the converter object
4474 * right here, then change the local prevLength state variable if necessary.
4475 * Then, if this character turns out to be unassigned or a fallback that
4476 * is not taken, the callback code must not save the new state in the converter
4477 * because the new state is for a character that is not output.
4478 * However, the callback must still restore the state from the converter
4479 * in case the callback function changed it for its output.
4480 */
4481 cnv->fromUnicodeStatus=prevLength; /* save the old state */
4482 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c)((uint16_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
c)&0xf)]
;
4483 if(value<=0xff) {
4484 if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)( ((stage2Entry) & ((uint32_t)1<< (16+((c)&0xf)
) )) !=0)
==0) {
4485 /* no mapping, leave value==0 */
4486 length=0;
4487 } else if(prevLength<=1) {
4488 length=1;
4489 } else {
4490 /* change from double-byte mode to single-byte */
4491 if (siLength == 1) {
4492 value|=(uint32_t)siBytes[0]<<8;
4493 length = 2;
4494 } else if (siLength == 2) {
4495 value|=(uint32_t)siBytes[1]<<8;
4496 value|=(uint32_t)siBytes[0]<<16;
4497 length = 3;
4498 }
4499 prevLength=1;
4500 }
4501 } else {
4502 if(prevLength==2) {
4503 length=2;
4504 } else {
4505 /* change from single-byte mode to double-byte */
4506 if (soLength == 1) {
4507 value|=(uint32_t)soBytes[0]<<16;
4508 length = 3;
4509 } else if (soLength == 2) {
4510 value|=(uint32_t)soBytes[1]<<16;
4511 value|=(uint32_t)soBytes[0]<<24;
4512 length = 4;
4513 }
4514 prevLength=2;
4515 }
4516 }
4517 break;
4518 case MBCS_OUTPUT_DBCS_ONLY:
4519 /* table with single-byte results, but only DBCS mappings used */
4520 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c)((uint16_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
c)&0xf)]
;
4521 if(value<=0xff) {
4522 /* no mapping or SBCS result, not taken for DBCS-only */
4523 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4524 length=0;
4525 } else {
4526 length=2;
4527 }
4528 break;
4529 case MBCS_OUTPUT_3:
4530 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c)((bytes)+(16*(uint32_t)(uint16_t)(stage2Entry)+((c)&0xf))
*3)
;
4531 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4532 if(value<=0xff) {
4533 length=1;
4534 } else if(value<=0xffff) {
4535 length=2;
4536 } else {
4537 length=3;
4538 }
4539 break;
4540 case MBCS_OUTPUT_4:
4541 value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c)((uint32_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
c)&0xf)]
;
4542 if(value<=0xff) {
4543 length=1;
4544 } else if(value<=0xffff) {
4545 length=2;
4546 } else if(value<=0xffffff) {
4547 length=3;
4548 } else {
4549 length=4;
4550 }
4551 break;
4552 case MBCS_OUTPUT_3_EUC:
4553 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c)((uint16_t *)(bytes))[16*(uint32_t)(uint16_t)(stage2Entry)+((
c)&0xf)]
;
4554 /* EUC 16-bit fixed-length representation */
4555 if(value<=0xff) {
4556 length=1;
4557 } else if((value&0x8000)==0) {
4558 value|=0x8e8000;
4559 length=3;
4560 } else if((value&0x80)==0) {
4561 value|=0x8f0080;
4562 length=3;
4563 } else {
4564 length=2;
4565 }
4566 break;
4567 case MBCS_OUTPUT_4_EUC:
4568 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c)((bytes)+(16*(uint32_t)(uint16_t)(stage2Entry)+((c)&0xf))
*3)
;
4569 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4570 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4571 if(value<=0xff) {
4572 length=1;
4573 } else if(value<=0xffff) {
4574 length=2;
4575 } else if((value&0x800000)==0) {
4576 value|=0x8e800000;
4577 length=4;
4578 } else if((value&0x8000)==0) {
4579 value|=0x8f008000;
4580 length=4;
4581 } else {
4582 length=3;
4583 }
4584 break;
4585 default:
4586 /* must not occur */
4587 /*
4588 * To avoid compiler warnings that value & length may be
4589 * used without having been initialized, we set them here.
4590 * In reality, this is unreachable code.
4591 * Not having a default branch also causes warnings with
4592 * some compilers.
4593 */
4594 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4595 length=0;
4596 break;
4597 }
4598
4599 /* is this code point assigned, or do we use fallbacks? */
4600 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)( ((stage2Entry) & ((uint32_t)1<< (16+((c)&0xf)
) )) !=0)
!=0 ||
4601 (UCNV_FROM_U_USE_FALLBACK(cnv, c)(((cnv)->useFallback) || ((uint32_t)((c)-0xe000)<0x1900
|| (uint32_t)((c)-0xf0000)<0x20000))
&& value!=0))
4602 ) {
4603 /*
4604 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4605 * There is no way with this data structure for fallback output
4606 * to be a zero byte.
4607 */
4608
4609unassigned:
4610 /* try an extension mapping */
4611 pArgs->source=source;
4612 c=_extFromU(cnv, cnv->sharedData,
4613 c, &source, sourceLimit,
4614 &target, target+targetCapacity,
4615 &offsets, sourceIndex,
4616 pArgs->flush,
4617 pErrorCode);
4618 nextSourceIndex+=(int32_t)(source-pArgs->source);
4619 prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4620
4621 if(U_FAILURE(*pErrorCode)) {
4622 /* not mappable or buffer overflow */
4623 break;
4624 } else {
4625 /* a mapping was written to the target, continue */
4626
4627 /* recalculate the targetCapacity after an extension mapping */
4628 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4629
4630 /* normal end of conversion: prepare for a new character */
4631 if(offsets!=NULL__null) {
4632 prevSourceIndex=sourceIndex;
4633 sourceIndex=nextSourceIndex;
4634 }
4635 continue;
4636 }
4637 }
4638 }
4639
4640 /* write the output character bytes from value and length */
4641 /* from the first if in the loop we know that targetCapacity>0 */
4642 if(length<=targetCapacity) {
4643 if(offsets==NULL__null) {
4644 switch(length) {
4645 /* each branch falls through to the next one */
4646 case 4:
4647 *target++=(uint8_t)(value>>24);
4648 U_FALLTHROUGH[[clang::fallthrough]];
4649 case 3:
4650 *target++=(uint8_t)(value>>16);
4651 U_FALLTHROUGH[[clang::fallthrough]];
4652 case 2:
4653 *target++=(uint8_t)(value>>8);
4654 U_FALLTHROUGH[[clang::fallthrough]];
4655 case 1:
4656 *target++=(uint8_t)value;
4657 U_FALLTHROUGH[[clang::fallthrough]];
4658 default:
4659 /* will never occur */
4660 break;
4661 }
4662 } else {
4663 switch(length) {
4664 /* each branch falls through to the next one */
4665 case 4:
4666 *target++=(uint8_t)(value>>24);
4667 *offsets++=sourceIndex;
4668 U_FALLTHROUGH[[clang::fallthrough]];
4669 case 3:
4670 *target++=(uint8_t)(value>>16);
4671 *offsets++=sourceIndex;
4672 U_FALLTHROUGH[[clang::fallthrough]];
4673 case 2:
4674 *target++=(uint8_t)(value>>8);
4675 *offsets++=sourceIndex;
4676 U_FALLTHROUGH[[clang::fallthrough]];
4677 case 1:
4678 *target++=(uint8_t)value;
4679 *offsets++=sourceIndex;
4680 U_FALLTHROUGH[[clang::fallthrough]];
4681 default:
4682 /* will never occur */
4683 break;
4684 }
4685 }
4686 targetCapacity-=length;
4687 } else {
4688 uint8_t *charErrorBuffer;
4689
4690 /*
4691 * We actually do this backwards here:
4692 * In order to save an intermediate variable, we output
4693 * first to the overflow buffer what does not fit into the
4694 * regular target.
4695 */
4696 /* we know that 1<=targetCapacity<length<=4 */
4697 length-=targetCapacity;
4698 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4699 switch(length) {
4700 /* each branch falls through to the next one */
4701 case 3:
4702 *charErrorBuffer++=(uint8_t)(value>>16);
4703 U_FALLTHROUGH[[clang::fallthrough]];
4704 case 2:
4705 *charErrorBuffer++=(uint8_t)(value>>8);
4706 U_FALLTHROUGH[[clang::fallthrough]];
4707 case 1:
4708 *charErrorBuffer=(uint8_t)value;
4709 U_FALLTHROUGH[[clang::fallthrough]];
4710 default:
4711 /* will never occur */
4712 break;
4713 }
4714 cnv->charErrorBufferLength=(int8_t)length;
4715
4716 /* now output what fits into the regular target */
4717 value>>=8*length; /* length was reduced by targetCapacity */
4718 switch(targetCapacity) {
4719 /* each branch falls through to the next one */
4720 case 3:
4721 *target++=(uint8_t)(value>>16);
4722 if(offsets!=NULL__null) {
4723 *offsets++=sourceIndex;
4724 }
4725 U_FALLTHROUGH[[clang::fallthrough]];
4726 case 2:
4727 *target++=(uint8_t)(value>>8);
4728 if(offsets!=NULL__null) {
4729 *offsets++=sourceIndex;
4730 }
4731 U_FALLTHROUGH[[clang::fallthrough]];
4732 case 1:
4733 *target++=(uint8_t)value;
4734 if(offsets!=NULL__null) {
4735 *offsets++=sourceIndex;
4736 }
4737 U_FALLTHROUGH[[clang::fallthrough]];
4738 default:
4739 /* will never occur */
4740 break;
4741 }
4742
4743 /* target overflow */
4744 targetCapacity=0;
4745 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4746 c=0;
4747 break;
4748 }
4749
4750 /* normal end of conversion: prepare for a new character */
4751 c=0;
4752 if(offsets!=NULL__null) {
4753 prevSourceIndex=sourceIndex;
4754 sourceIndex=nextSourceIndex;
4755 }
4756 continue;
4757 } else {
4758 /* target is full */
4759 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4760 break;
4761 }
4762 }
4763
4764 /*
4765 * the end of the input stream and detection of truncated input
4766 * are handled by the framework, but for EBCDIC_STATEFUL conversion
4767 * we need to emit an SI at the very end
4768 *
4769 * conditions:
4770 * successful
4771 * EBCDIC_STATEFUL in DBCS mode
4772 * end of input and no truncated input
4773 */
4774 if( U_SUCCESS(*pErrorCode) &&
4775 outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4776 pArgs->flush && source>=sourceLimit && c==0
4777 ) {
4778 /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4779 if(targetCapacity>0) {
4780 *target++=(uint8_t)siBytes[0];
4781 if (siLength == 2) {
4782 if (targetCapacity<2) {
4783 cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
4784 cnv->charErrorBufferLength=1;
4785 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4786 } else {
4787 *target++=(uint8_t)siBytes[1];
4788 }
4789 }
4790 if(offsets!=NULL__null) {
4791 /* set the last source character's index (sourceIndex points at sourceLimit now) */
4792 *offsets++=prevSourceIndex;
4793 }
4794 } else {
4795 /* target is full */
4796 cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
4797 if (siLength == 2) {
4798 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
4799 }
4800 cnv->charErrorBufferLength=siLength;
4801 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4802 }
4803 prevLength=1; /* we switched into SBCS */
4804 }
4805
4806 /* set the converter state back into UConverter */
4807 cnv->fromUChar32=c;
4808 cnv->fromUnicodeStatus=prevLength;
4809
4810 /* write back the updated pointers */
4811 pArgs->source=source;
4812 pArgs->target=(char *)target;
4813 pArgs->offsets=offsets;
4814}
4815
4816/*
4817 * This is another simple conversion function for internal use by other
4818 * conversion implementations.
4819 * It does not use the converter state nor call callbacks.
4820 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4821 * It handles conversion extensions but not GB 18030.
4822 *
4823 * It converts one single Unicode code point into codepage bytes, encoded
4824 * as one 32-bit value. The function returns the number of bytes in *pValue:
4825 * 1..4 the number of bytes in *pValue
4826 * 0 unassigned (*pValue undefined)
4827 * -1 illegal (currently not used, *pValue undefined)
4828 *
4829 * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4830 * the second to last byte in bits 15..8, etc.
4831 * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4832 */
4833U_CFUNCextern "C" int32_t
4834ucnv_MBCSFromUChar32ucnv_MBCSFromUChar32_71(UConverterSharedData *sharedData,
4835 UChar32 c, uint32_t *pValue,
4836 UBool useFallback) {
4837 const int32_t *cx;
4838 const uint16_t *table;
4839#if 0
4840/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4841 const uint8_t *p;
4842#endif
4843 uint32_t stage2Entry;
4844 uint32_t value;
4845 int32_t length;
4846
4847 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4848 if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY1)) {
4849 table=sharedData->mbcs.fromUnicodeTable;
4850
4851 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4852 if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4853 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c)((uint16_t *)sharedData->mbcs.fromUnicodeBytes)[ (table)[ (
table)[(c)>>10] +(((c)>>4)&0x3f) ] +((c)&
0xf) ]
;
4854 /* is this code point assigned, or do we use fallbacks? */
4855 if(useFallback ? value>=0x800 : value>=0xc00) {
4856 *pValue=value&0xff;
4857 return 1;
4858 }
4859 } else /* outputType!=MBCS_OUTPUT_1 */ {
4860 stage2Entry=MBCS_STAGE_2_FROM_U(table, c)((const uint32_t *)(table))[ (table)[(c)>>10] +(((c)>>
4)&0x3f) ]
;
4861
4862 /* get the bytes and the length for the output */
4863 switch(sharedData->mbcs.outputType) {
4864 case MBCS_OUTPUT_2:
4865 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c)((uint16_t *)(sharedData->mbcs.fromUnicodeBytes))[16*(uint32_t
)(uint16_t)(stage2Entry)+((c)&0xf)]
;
4866 if(value<=0xff) {
4867 length=1;
4868 } else {
4869 length=2;
4870 }
4871 break;
4872#if 0
4873/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4874 case MBCS_OUTPUT_DBCS_ONLY:
4875 /* table with single-byte results, but only DBCS mappings used */
4876 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c)((uint16_t *)(sharedData->mbcs.fromUnicodeBytes))[16*(uint32_t
)(uint16_t)(stage2Entry)+((c)&0xf)]
;
4877 if(value<=0xff) {
4878 /* no mapping or SBCS result, not taken for DBCS-only */
4879 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4880 length=0;
4881 } else {
4882 length=2;
4883 }
4884 break;
4885 case MBCS_OUTPUT_3:
4886 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c)((sharedData->mbcs.fromUnicodeBytes)+(16*(uint32_t)(uint16_t
)(stage2Entry)+((c)&0xf))*3)
;
4887 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4888 if(value<=0xff) {
4889 length=1;
4890 } else if(value<=0xffff) {
4891 length=2;
4892 } else {
4893 length=3;
4894 }
4895 break;
4896 case MBCS_OUTPUT_4:
4897 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c)((uint32_t *)(sharedData->mbcs.fromUnicodeBytes))[16*(uint32_t
)(uint16_t)(stage2Entry)+((c)&0xf)]
;
4898 if(value<=0xff) {
4899 length=1;
4900 } else if(value<=0xffff) {
4901 length=2;
4902 } else if(value<=0xffffff) {
4903 length=3;
4904 } else {
4905 length=4;
4906 }
4907 break;
4908 case MBCS_OUTPUT_3_EUC:
4909 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c)((uint16_t *)(sharedData->mbcs.fromUnicodeBytes))[16*(uint32_t
)(uint16_t)(stage2Entry)+((c)&0xf)]
;
4910 /* EUC 16-bit fixed-length representation */
4911 if(value<=0xff) {
4912 length=1;
4913 } else if((value&0x8000)==0) {
4914 value|=0x8e8000;
4915 length=3;
4916 } else if((value&0x80)==0) {
4917 value|=0x8f0080;
4918 length=3;
4919 } else {
4920 length=2;
4921 }
4922 break;
4923 case MBCS_OUTPUT_4_EUC:
4924 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c)((sharedData->mbcs.fromUnicodeBytes)+(16*(uint32_t)(uint16_t
)(stage2Entry)+((c)&0xf))*3)
;
4925 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4926 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4927 if(value<=0xff) {
4928 length=1;
4929 } else if(value<=0xffff) {
4930 length=2;
4931 } else if((value&0x800000)==0) {
4932 value|=0x8e800000;
4933 length=4;
4934 } else if((value&0x8000)==0) {
4935 value|=0x8f008000;
4936 length=4;
4937 } else {
4938 length=3;
4939 }
4940 break;
4941#endif
4942 default:
4943 /* must not occur */
4944 return -1;
4945 }
4946
4947 /* is this code point assigned, or do we use fallbacks? */
4948 if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)( ((stage2Entry) & ((uint32_t)1<< (16+((c)&0xf)
) )) !=0)
||
4949 (FROM_U_USE_FALLBACK(useFallback, c)((useFallback) || ((uint32_t)((c)-0xe000)<0x1900 || (uint32_t
)((c)-0xf0000)<0x20000))
&& value!=0)
4950 ) {
4951 /*
4952 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4953 * There is no way with this data structure for fallback output
4954 * to be a zero byte.
4955 */
4956 /* assigned */
4957 *pValue=value;
4958 return length;
4959 }
4960 }
4961 }
4962
4963 cx=sharedData->mbcs.extIndexes;
4964 if(cx!=NULL__null) {
4965 length=ucnv_extSimpleMatchFromUucnv_extSimpleMatchFromU_71(cx, c, pValue, useFallback);
4966 return length>=0 ? length : -length; /* return abs(length); */
4967 }
4968
4969 /* unassigned */
4970 return 0;
4971}
4972
4973
4974#if 0
4975/*
4976 * This function has been moved to ucnv2022.c for inlining.
4977 * This implementation is here only for documentation purposes
4978 */
4979
4980/**
4981 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4982 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4983 * It does not handle conversion extensions (_extFromU()).
4984 *
4985 * It returns the codepage byte for the code point, or -1 if it is unassigned.
4986 */
4987U_CFUNCextern "C" int32_t
4988ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4989 UChar32 c,
4990 UBool useFallback) {
4991 const uint16_t *table;
4992 int32_t value;
4993
4994 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4995 if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY1)) {
4996 return -1;
4997 }
4998
4999 /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
5000 table=sharedData->mbcs.fromUnicodeTable;
5001
5002 /* get the byte for the output */
5003 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c)((uint16_t *)sharedData->mbcs.fromUnicodeBytes)[ (table)[ (
table)[(c)>>10] +(((c)>>4)&0x3f) ] +((c)&
0xf) ]
;
5004 /* is this code point assigned, or do we use fallbacks? */
5005 if(useFallback ? value>=0x800 : value>=0xc00) {
5006 return value&0xff;
5007 } else {
5008 return -1;
5009 }
5010}
5011#endif
5012
5013/* MBCS-from-UTF-8 conversion functions ------------------------------------- */
5014
5015/* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
5016static const UChar32
5017utf8_offsets[5]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
5018
5019static void U_CALLCONV
5020ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5021 UConverterToUnicodeArgs *pToUArgs,
5022 UErrorCode *pErrorCode) {
5023 UConverter *utf8, *cnv;
5024 const uint8_t *source, *sourceLimit;
5025 uint8_t *target;
5026 int32_t targetCapacity;
5027
5028 const uint16_t *table, *sbcsIndex;
5029 const uint16_t *results;
5030
5031 int8_t oldToULength, toULength, toULimit;
5032
5033 UChar32 c;
5034 uint8_t b, t1, t2;
5035
5036 uint32_t asciiRoundtrips;
5037 uint16_t value, minValue = 0;
5038 UBool hasSupplementary;
5039
5040 /* set up the local pointers */
5041 utf8=pToUArgs->converter;
5042 cnv=pFromUArgs->converter;
5043 source=(uint8_t *)pToUArgs->source;
5044 sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5045 target=(uint8_t *)pFromUArgs->target;
5046 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5047
5048 table=cnv->sharedData->mbcs.fromUnicodeTable;
5049 sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
5050 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
5051 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5052 } else {
5053 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5054 }
5055 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5056
5057 if(cnv->useFallback) {
5058 /* use all roundtrip and fallback results */
5059 minValue=0x800;
5060 } else {
5061 /* use only roundtrips and fallbacks from private-use characters */
5062 minValue=0xc00;
5063 }
5064 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY1);
5065
5066 /* get the converter state from the UTF-8 UConverter */
5067 if(utf8->toULength > 0) {
5068 toULength=oldToULength=utf8->toULength;
5069 toULimit=(int8_t)utf8->mode;
5070 c=(UChar32)utf8->toUnicodeStatus;
5071 } else {
5072 toULength=oldToULength=toULimit=0;
5073 c = 0;
5074 }
5075
5076 // The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
5077 // If the buffer ends with a truncated 2- or 3-byte sequence,
5078 // then we reduce the sourceLimit to before that,
5079 // and collect the remaining bytes after the conversion loop.
5080 {
5081 // Do not go back into the bytes that will be read for finishing a partial
5082 // sequence from the previous buffer.
5083 int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5084 if(length>0) {
5085 uint8_t b1=*(sourceLimit-1);
5086 if(U8_IS_SINGLE(b1)(((b1)&0x80)==0)) {
5087 // common ASCII character
5088 } else if(U8_IS_TRAIL(b1)((int8_t)(b1)<-0x40) && length>=2) {
5089 uint8_t b2=*(sourceLimit-2);
5090 if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)("\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[(b2)&0xf]&(1<<((uint8_t)(b1)>>5)))
) {
5091 // truncated 3-byte sequence
5092 sourceLimit-=2;
5093 }
5094 } else if(0xc2<=b1 && b1<0xf0) {
5095 // truncated 2- or 3-byte sequence
5096 --sourceLimit;
5097 }
5098 }
5099 }
5100
5101 if(c!=0 && targetCapacity>0) {
5102 utf8->toUnicodeStatus=0;
5103 utf8->toULength=0;
5104 goto moreBytes;
5105 /*
5106 * Note: We could avoid the goto by duplicating some of the moreBytes
5107 * code, but only up to the point of collecting a complete UTF-8
5108 * sequence; then recurse for the toUBytes[toULength]
5109 * and then continue with normal conversion.
5110 *
5111 * If so, move this code to just after initializing the minimum
5112 * set of local variables for reading the UTF-8 input
5113 * (utf8, source, target, limits but not cnv, table, minValue, etc.).
5114 *
5115 * Potential advantages:
5116 * - avoid the goto
5117 * - oldToULength could become a local variable in just those code blocks
5118 * that deal with buffer boundaries
5119 * - possibly faster if the goto prevents some compiler optimizations
5120 * (this would need measuring to confirm)
5121 * Disadvantage:
5122 * - code duplication
5123 */
5124 }
5125
5126 /* conversion loop */
5127 while(source<sourceLimit) {
5128 if(targetCapacity>0) {
5129 b=*source++;
5130 if(U8_IS_SINGLE(b)(((b)&0x80)==0)) {
5131 /* convert ASCII */
5132 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)(((asciiRoundtrips) & (1<<((b)>>2)))!=0)) {
5133 *target++=(uint8_t)b;
5134 --targetCapacity;
5135 continue;
5136 } else {
5137 c=b;
5138 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c)(results)[ (sbcsIndex)[0] +(c) ];
5139 }
5140 } else {
5141 if(b<0xe0) {
5142 if( /* handle U+0080..U+07FF inline */
5143 b>=0xc2 &&
5144 (t1=(uint8_t)(*source-0x80)) <= 0x3f
5145 ) {
5146 c=b&0x1f;
5147 ++source;
5148 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1)(results)[ (sbcsIndex)[c] +(t1) ];
5149 if(value>=minValue) {
5150 *target++=(uint8_t)value;
5151 --targetCapacity;
5152 continue;
5153 } else {
5154 c=(c<<6)|t1;
5155 }
5156 } else {
5157 c=-1;
5158 }
5159 } else if(b==0xe0) {
5160 if( /* handle U+0800..U+0FFF inline */
5161 (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5162 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5163 ) {
5164 c=t1;
5165 source+=2;
5166 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2)(results)[ (sbcsIndex)[c] +(t2) ];
5167 if(value>=minValue) {
5168 *target++=(uint8_t)value;
5169 --targetCapacity;
5170 continue;
5171 } else {
5172 c=(c<<6)|t2;
5173 }
5174 } else {
5175 c=-1;
5176 }
5177 } else {
5178 c=-1;
5179 }
5180
5181 if(c<0) {
5182 /* handle "complicated" and error cases, and continuing partial characters */
5183 oldToULength=0;
5184 toULength=1;
5185 toULimit=U8_COUNT_BYTES_NON_ASCII(b)(((uint8_t)((b)-0xc2)<=0x32) ? ((uint8_t)(b)>=0xe0)+((uint8_t
)(b)>=0xf0)+2 : 0)
;
5186 c=b;
5187moreBytes:
5188 while(toULength<toULimit) {
5189 /*
5190 * The sourceLimit may have been adjusted before the conversion loop
5191 * to stop before a truncated sequence.
5192 * Here we need to use the real limit in case we have two truncated
5193 * sequences at the end.
5194 * See ticket #7492.
5195 */
5196 if(source<(uint8_t *)pToUArgs->sourceLimit) {
5197 b=*source;
5198 if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
5199 ++source;
5200 ++toULength;
5201 c=(c<<6)+b;
5202 } else {
5203 break; /* sequence too short, stop with toULength<toULimit */
5204 }
5205 } else {
5206 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5207 source-=(toULength-oldToULength);
5208 while(oldToULength<toULength) {
5209 utf8->toUBytes[oldToULength++]=*source++;
5210 }
5211 utf8->toUnicodeStatus=c;
5212 utf8->toULength=toULength;
5213 utf8->mode=toULimit;
5214 pToUArgs->source=(char *)source;
5215 pFromUArgs->target=(char *)target;
5216 return;
5217 }
5218 }
5219
5220 if(toULength==toULimit) {
5221 c-=utf8_offsets[toULength];
5222 if(toULength<=3) { /* BMP */
5223 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
5224 } else {
5225 /* supplementary code point */
5226 if(!hasSupplementary) {
5227 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5228 value=0;
5229 } else {
5230 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c)(results)[ (table)[ (table)[(c)>>10] +(((c)>>4)&
0x3f) ] +((c)&0xf) ]
;
5231 }
5232 }
5233 } else {
5234 /* error handling: illegal UTF-8 byte sequence */
5235 source-=(toULength-oldToULength);
5236 while(oldToULength<toULength) {
5237 utf8->toUBytes[oldToULength++]=*source++;
5238 }
5239 utf8->toULength=toULength;
5240 pToUArgs->source=(char *)source;
5241 pFromUArgs->target=(char *)target;
5242 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5243 return;
5244 }
5245 }
5246 }
5247
5248 if(value>=minValue) {
5249 /* output the mapping for c */
5250 *target++=(uint8_t)value;
5251 --targetCapacity;
5252 } else {
5253 /* value<minValue means c is unassigned (unmappable) */
5254 /*
5255 * Try an extension mapping.
5256 * Pass in no source because we don't have UTF-16 input.
5257 * If we have a partial match on c, we will return and revert
5258 * to UTF-8->UTF-16->charset conversion.
5259 */
5260 static const UChar nul=0;
5261 const UChar *noSource=&nul;
5262 c=_extFromU(cnv, cnv->sharedData,
5263 c, &noSource, noSource,
5264 &target, target+targetCapacity,
5265 NULL__null, -1,
5266 pFromUArgs->flush,
5267 pErrorCode);
5268
5269 if(U_FAILURE(*pErrorCode)) {
5270 /* not mappable or buffer overflow */
5271 cnv->fromUChar32=c;
5272 break;
5273 } else if(cnv->preFromUFirstCP>=0) {
5274 /*
5275 * Partial match, return and revert to pivoting.
5276 * In normal from-UTF-16 conversion, we would just continue
5277 * but then exit the loop because the extension match would
5278 * have consumed the source.
5279 */
5280 *pErrorCode=U_USING_DEFAULT_WARNING;
5281 break;
5282 } else {
5283 /* a mapping was written to the target, continue */
5284
5285 /* recalculate the targetCapacity after an extension mapping */
5286 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5287 }
5288 }
5289 } else {
5290 /* target is full */
5291 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5292 break;
5293 }
5294 }
5295
5296 /*
5297 * The sourceLimit may have been adjusted before the conversion loop
5298 * to stop before a truncated sequence.
5299 * If so, then collect the truncated sequence now.
5300 */
5301 if(U_SUCCESS(*pErrorCode) &&
5302 cnv->preFromUFirstCP<0 &&
5303 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5304 c=utf8->toUBytes[0]=b=*source++;
5305 toULength=1;
5306 toULimit=U8_COUNT_BYTES(b)((((b)&0x80)==0) ? 1 : (((uint8_t)((b)-0xc2)<=0x32) ? (
(uint8_t)(b)>=0xe0)+((uint8_t)(b)>=0xf0)+2 : 0))
;
5307 while(source<sourceLimit) {
5308 utf8->toUBytes[toULength++]=b=*source++;
5309 c=(c<<6)+b;
5310 }
5311 utf8->toUnicodeStatus=c;
5312 utf8->toULength=toULength;
5313 utf8->mode=toULimit;
5314 }
5315
5316 /* write back the updated pointers */
5317 pToUArgs->source=(char *)source;
5318 pFromUArgs->target=(char *)target;
5319}
5320
5321static void U_CALLCONV
5322ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5323 UConverterToUnicodeArgs *pToUArgs,
5324 UErrorCode *pErrorCode) {
5325 UConverter *utf8, *cnv;
5326 const uint8_t *source, *sourceLimit;
5327 uint8_t *target;
5328 int32_t targetCapacity;
5329
5330 const uint16_t *table, *mbcsIndex;
5331 const uint16_t *results;
5332
5333 int8_t oldToULength, toULength, toULimit;
5334
5335 UChar32 c;
5336 uint8_t b, t1, t2;
5337
5338 uint32_t stage2Entry;
5339 uint32_t asciiRoundtrips;
5340 uint16_t value = 0;
5341 UBool hasSupplementary;
5342
5343 /* set up the local pointers */
5344 utf8=pToUArgs->converter;
5345 cnv=pFromUArgs->converter;
5346 source=(uint8_t *)pToUArgs->source;
5347 sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5348 target=(uint8_t *)pFromUArgs->target;
5349 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5350
5351 table=cnv->sharedData->mbcs.fromUnicodeTable;
5352 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5353 if((cnv->options&UCNV_OPTION_SWAP_LFNL0x10)!=0) {
5354 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5355 } else {
5356 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5357 }
5358 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5359
5360 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY1);
5361
5362 /* get the converter state from the UTF-8 UConverter */
5363 if(utf8->toULength > 0) {
5364 toULength=oldToULength=utf8->toULength;
5365 toULimit=(int8_t)utf8->mode;
5366 c=(UChar32)utf8->toUnicodeStatus;
5367 } else {
5368 toULength=oldToULength=toULimit=0;
5369 c = 0;
5370 }
5371
5372 // The conversion loop checks source<sourceLimit only once per 1/2/3-byte character.
5373 // If the buffer ends with a truncated 2- or 3-byte sequence,
5374 // then we reduce the sourceLimit to before that,
5375 // and collect the remaining bytes after the conversion loop.
5376 {
5377 // Do not go back into the bytes that will be read for finishing a partial
5378 // sequence from the previous buffer.
5379 int32_t length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5380 if(length>0) {
5381 uint8_t b1=*(sourceLimit-1);
5382 if(U8_IS_SINGLE(b1)(((b1)&0x80)==0)) {
5383 // common ASCII character
5384 } else if(U8_IS_TRAIL(b1)((int8_t)(b1)<-0x40) && length>=2) {
5385 uint8_t b2=*(sourceLimit-2);
5386 if(0xe0<=b2 && b2<0xf0 && U8_IS_VALID_LEAD3_AND_T1(b2, b1)("\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[(b2)&0xf]&(1<<((uint8_t)(b1)>>5)))
) {
5387 // truncated 3-byte sequence
5388 sourceLimit-=2;
5389 }
5390 } else if(0xc2<=b1 && b1<0xf0) {
5391 // truncated 2- or 3-byte sequence
5392 --sourceLimit;
5393 }
5394 }
5395 }
5396
5397 if(c!=0 && targetCapacity>0) {
5398 utf8->toUnicodeStatus=0;
5399 utf8->toULength=0;
5400 goto moreBytes;
5401 /* See note in ucnv_SBCSFromUTF8() about this goto. */
5402 }
5403
5404 /* conversion loop */
5405 while(source<sourceLimit) {
5406 if(targetCapacity>0) {
5407 b=*source++;
5408 if(U8_IS_SINGLE(b)(((b)&0x80)==0)) {
5409 /* convert ASCII */
5410 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)(((asciiRoundtrips) & (1<<((b)>>2)))!=0)) {
5411 *target++=b;
5412 --targetCapacity;
5413 continue;
5414 } else {
5415 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b)(results)[ (mbcsIndex)[0] +(b) ];
5416 if(value==0) {
5417 c=b;
5418 goto unassigned;
5419 }
5420 }
5421 } else {
5422 if(b>=0xe0) {
5423 if( /* handle U+0800..U+D7FF inline */
5424 b<=0xed && // do not assume maxFastUChar>0xd7ff
5425 U8_IS_VALID_LEAD3_AND_T1(b, t1=source[0])("\x20\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x10\x30\x30"
[(b)&0xf]&(1<<((uint8_t)(t1=source[0])>>5
)))
&&
5426 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5427 ) {
5428 c=((b&0xf)<<6)|(t1&0x3f);
5429 source+=2;
5430 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2)(results)[ (mbcsIndex)[c] +(t2) ];
5431 if(value==0) {
5432 c=(c<<6)|t2;
5433 goto unassigned;
5434 }
5435 } else {
5436 c=-1;
5437 }
5438 } else {
5439 if( /* handle U+0080..U+07FF inline */
5440 b>=0xc2 &&
5441 (t1=(uint8_t)(*source-0x80)) <= 0x3f
5442 ) {
5443 c=b&0x1f;
5444 ++source;
5445 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1)(results)[ (mbcsIndex)[c] +(t1) ];
5446 if(value==0) {
5447 c=(c<<6)|t1;
5448 goto unassigned;
5449 }
5450 } else {
5451 c=-1;
5452 }
5453 }
5454
5455 if(c<0) {
5456 /* handle "complicated" and error cases, and continuing partial characters */
5457 oldToULength=0;
5458 toULength=1;
5459 toULimit=U8_COUNT_BYTES_NON_ASCII(b)(((uint8_t)((b)-0xc2)<=0x32) ? ((uint8_t)(b)>=0xe0)+((uint8_t
)(b)>=0xf0)+2 : 0)
;
5460 c=b;
5461moreBytes:
5462 while(toULength<toULimit) {
5463 /*
5464 * The sourceLimit may have been adjusted before the conversion loop
5465 * to stop before a truncated sequence.
5466 * Here we need to use the real limit in case we have two truncated
5467 * sequences at the end.
5468 * See ticket #7492.
5469 */
5470 if(source<(uint8_t *)pToUArgs->sourceLimit) {
5471 b=*source;
5472 if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
5473 ++source;
5474 ++toULength;
5475 c=(c<<6)+b;
5476 } else {
5477 break; /* sequence too short, stop with toULength<toULimit */
5478 }
5479 } else {
5480 /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5481 source-=(toULength-oldToULength);
5482 while(oldToULength<toULength) {
5483 utf8->toUBytes[oldToULength++]=*source++;
5484 }
5485 utf8->toUnicodeStatus=c;
5486 utf8->toULength=toULength;
5487 utf8->mode=toULimit;
5488 pToUArgs->source=(char *)source;
5489 pFromUArgs->target=(char *)target;
5490 return;
5491 }
5492 }
5493
5494 if(toULength==toULimit) {
5495 c-=utf8_offsets[toULength];
5496 if(toULength<=3) { /* BMP */
5497 stage2Entry=MBCS_STAGE_2_FROM_U(table, c)((const uint32_t *)(table))[ (table)[(c)>>10] +(((c)>>
4)&0x3f) ]
;
5498 } else {
5499 /* supplementary code point */
5500 if(!hasSupplementary) {
5501 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5502 stage2Entry=0;
5503 } else {
5504 stage2Entry=MBCS_STAGE_2_FROM_U(table, c)((const uint32_t *)(table))[ (table)[(c)>>10] +(((c)>>
4)&0x3f) ]
;
5505 }
5506 }
5507 } else {
5508 /* error handling: illegal UTF-8 byte sequence */
5509 source-=(toULength-oldToULength);
5510 while(oldToULength<toULength) {
5511 utf8->toUBytes[oldToULength++]=*source++;
5512 }
5513 utf8->toULength=toULength;
5514 pToUArgs->source=(char *)source;
5515 pFromUArgs->target=(char *)target;
5516 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5517 return;
5518 }
5519
5520 /* get the bytes and the length for the output */
5521 /* MBCS_OUTPUT_2 */
5522 value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c)((uint16_t *)(results))[16*(uint32_t)(uint16_t)(stage2Entry)+
((c)&0xf)]
;
5523
5524 /* is this code point assigned, or do we use fallbacks? */
5525 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)( ((stage2Entry) & ((uint32_t)1<< (16+((c)&0xf)
) )) !=0)
||
5526 (UCNV_FROM_U_USE_FALLBACK(cnv, c)(((cnv)->useFallback) || ((uint32_t)((c)-0xe000)<0x1900
|| (uint32_t)((c)-0xf0000)<0x20000))
&& value!=0))
5527 ) {
5528 goto unassigned;
5529 }
5530 }
5531 }
5532
5533 /* write the output character bytes from value and length */
5534 /* from the first if in the loop we know that targetCapacity>0 */
5535 if(value<=0xff) {
5536 /* this is easy because we know that there is enough space */
5537 *target++=(uint8_t)value;
5538 --targetCapacity;
5539 } else /* length==2 */ {
5540 *target++=(uint8_t)(value>>8);
5541 if(2<=targetCapacity) {
5542 *target++=(uint8_t)value;
5543 targetCapacity-=2;
5544 } else {
5545 cnv->charErrorBuffer[0]=(char)value;
5546 cnv->charErrorBufferLength=1;
5547
5548 /* target overflow */
5549 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5550 break;
5551 }
5552 }
5553 continue;
5554
5555unassigned:
5556 {
5557 /*
5558 * Try an extension mapping.
5559 * Pass in no source because we don't have UTF-16 input.
5560 * If we have a partial match on c, we will return and revert
5561 * to UTF-8->UTF-16->charset conversion.
5562 */
5563 static const UChar nul=0;
5564 const UChar *noSource=&nul;
5565 c=_extFromU(cnv, cnv->sharedData,
5566 c, &noSource, noSource,
5567 &target, target+targetCapacity,
5568 NULL__null, -1,
5569 pFromUArgs->flush,
5570 pErrorCode);
5571
5572 if(U_FAILURE(*pErrorCode)) {
5573 /* not mappable or buffer overflow */
5574 cnv->fromUChar32=c;
5575 break;
5576 } else if(cnv->preFromUFirstCP>=0) {
5577 /*
5578 * Partial match, return and revert to pivoting.
5579 * In normal from-UTF-16 conversion, we would just continue
5580 * but then exit the loop because the extension match would
5581 * have consumed the source.
5582 */
5583 *pErrorCode=U_USING_DEFAULT_WARNING;
5584 break;
5585 } else {
5586 /* a mapping was written to the target, continue */
5587
5588 /* recalculate the targetCapacity after an extension mapping */
5589 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5590 continue;
5591 }
5592 }
5593 } else {
5594 /* target is full */
5595 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5596 break;
5597 }
5598 }
5599
5600 /*
5601 * The sourceLimit may have been adjusted before the conversion loop
5602 * to stop before a truncated sequence.
5603 * If so, then collect the truncated sequence now.
5604 */
5605 if(U_SUCCESS(*pErrorCode) &&
5606 cnv->preFromUFirstCP<0 &&
5607 source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5608 c=utf8->toUBytes[0]=b=*source++;
5609 toULength=1;
5610 toULimit=U8_COUNT_BYTES(b)((((b)&0x80)==0) ? 1 : (((uint8_t)((b)-0xc2)<=0x32) ? (
(uint8_t)(b)>=0xe0)+((uint8_t)(b)>=0xf0)+2 : 0))
;
5611 while(source<sourceLimit) {
5612 utf8->toUBytes[toULength++]=b=*source++;
5613 c=(c<<6)+b;
5614 }
5615 utf8->toUnicodeStatus=c;
5616 utf8->toULength=toULength;
5617 utf8->mode=toULimit;
5618 }
5619
5620 /* write back the updated pointers */
5621 pToUArgs->source=(char *)source;
5622 pFromUArgs->target=(char *)target;
5623}
5624
5625/* miscellaneous ------------------------------------------------------------ */
5626
5627static void U_CALLCONV
5628ucnv_MBCSGetStarters(const UConverter* cnv,
5629 UBool starters[256],
5630 UErrorCode *) {
5631 const int32_t *state0;
5632 int i;
5633
5634 state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5635 for(i=0; i<256; ++i) {
5636 /* all bytes that cause a state transition from state 0 are lead bytes */
5637 starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i])((state0[i])>=0);
5638 }
5639}
5640
5641/*
5642 * This is an internal function that allows other converter implementations
5643 * to check whether a byte is a lead byte.
5644 */
5645U_CFUNCextern "C" UBool
5646ucnv_MBCSIsLeadByteucnv_MBCSIsLeadByte_71(UConverterSharedData *sharedData, char byte) {
5647 return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte])((sharedData->mbcs.stateTable[0][(uint8_t)byte])>=0);
5648}
5649
5650static void U_CALLCONV
5651ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5652 int32_t offsetIndex,
5653 UErrorCode *pErrorCode) {
5654 UConverter *cnv=pArgs->converter;
5655 char *p, *subchar;
5656 char buffer[4];
5657 int32_t length;
5658
5659 /* first, select between subChar and subChar1 */
5660 if( cnv->subChar1!=0 &&
5661 (cnv->sharedData->mbcs.extIndexes!=NULL__null ?
5662 cnv->useSubChar1 :
5663 (cnv->invalidUCharBuffer[0]<=0xff))
5664 ) {
5665 /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5666 subchar=(char *)&cnv->subChar1;
5667 length=1;
5668 } else {
5669 /* select subChar in all other cases */
5670 subchar=(char *)cnv->subChars;
5671 length=cnv->subCharLen;
5672 }
5673
5674 /* reset the selector for the next code point */
5675 cnv->useSubChar1=FALSE0;
5676
5677 if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5678 p=buffer;
5679
5680 /* fromUnicodeStatus contains prevLength */
5681 switch(length) {
5682 case 1:
5683 if(cnv->fromUnicodeStatus==2) {
5684 /* DBCS mode and SBCS sub char: change to SBCS */
5685 cnv->fromUnicodeStatus=1;
5686 *p++=UCNV_SI0x0F;
5687 }
5688 *p++=subchar[0];
5689 break;
5690 case 2:
5691 if(cnv->fromUnicodeStatus<=1) {
5692 /* SBCS mode and DBCS sub char: change to DBCS */
5693 cnv->fromUnicodeStatus=2;
5694 *p++=UCNV_SO0x0E;
5695 }
5696 *p++=subchar[0];
5697 *p++=subchar[1];
5698 break;
5699 default:
5700 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5701 return;
5702 }
5703 subchar=buffer;
5704 length=(int32_t)(p-buffer);
5705 }
5706
5707 ucnv_cbFromUWriteBytesucnv_cbFromUWriteBytes_71(pArgs, subchar, length, offsetIndex, pErrorCode);
5708}
5709
5710U_CFUNCextern "C" UConverterType
5711ucnv_MBCSGetTypeucnv_MBCSGetType_71(const UConverter* converter) {
5712 /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5713 if(converter->sharedData->mbcs.countStates==1) {
5714 return (UConverterType)UCNV_SBCS;
5715 } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5716 return (UConverterType)UCNV_EBCDIC_STATEFUL;
5717 } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5718 return (UConverterType)UCNV_DBCS;
5719 }
5720 return (UConverterType)UCNV_MBCS;
5721}
5722
5723#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */